Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system

Opt Express. 2019 Aug 5;27(16):23293-23306. doi: 10.1364/OE.27.023293.

Abstract

A novel Four-channels reservoir computing (RC) based on polarization dynamics in mutually coupled vertical cavity surface emitting lasers (MDC-VCSELs) is proposed and demonstrated numerically. Here, the four channels are realized in two orthogonal polarization modes (x-polarization and y-polarization modes) of two VCSELs for the first time. A chaotic time series prediction task is employed to quantitatively evaluated the prediction performance of the proposed system. It is found that the Four-channels RC based on MDC-VCSELs can produce comparable prediction performance with One-channel RC, and it is possible to increase four times information processing rate by using the Four-channels RC. Besides, the effects of injection current, external injection strength, frequency detuning, coupling strength, as well as internal parameters on the prediction performance of the Four-channels RC based on MDC-VCSELs are carefully examined. Moreover, the influences of sampled period of input signal and the number of virtual nodes are also considered. The proposed Four-channels RC based on MDC-VCSELs is valuable for further enhancing the information processing rate of RC-based neuromorphic photonic systems.