Oftentimes we find ourselves in situations in which we need to perform concurrent motor and cognitive tasks like simple locomotion while being cognitively involved. In the present study, we investigated in how far cognitive and motor functioning interfere in an outdoor environment. Our participants performed an auditory oddball task while concurrently completing various motor tasks on the outside premises of our institute. Beside behavioural responses and subjective workload ratings, we also analysed electrophysiological data recorded with a 30-channel mobile EEG montage. We observed an increase of subjective workload and decrease of performance with increasing movement complexity. Accordingly, we also found a decrease in the parietal P3 amplitude as well as in frontal midline Theta power with higher motor load. These results indicate that an increased movement complexity imposes a higher workload to the cognitive system, which, in turn, effectively reduces the availability of cognitive resources for the cognitive task. Overall this experiment demonstrates the feasibility of transferring classical paradigms of cognitive research to real-world settings. The findings support the notion of shared resources for motor and cognitive functions by demonstrating distinct modulations of correlates of cognitive processes across different motor tasks.