Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion
- PMID: 31512990
- DOI: 10.1152/physrev.00015.2019
Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion
Abstract
The vertebrate control of locomotion involves all levels of the nervous system from cortex to the spinal cord. Here, we aim to cover all main aspects of this complex behavior, from the operation of the microcircuits in the spinal cord to the systems and behavioral levels and extend from mammalian locomotion to the basic undulatory movements of lamprey and fish. The cellular basis of propulsion represents the core of the control system, and it involves the spinal central pattern generator networks (CPGs) controlling the timing of different muscles, the sensory compensation for perturbations, and the brain stem command systems controlling the level of activity of the CPGs and the speed of locomotion. The forebrain and in particular the basal ganglia are involved in determining which motor programs should be recruited at a given point of time and can both initiate and stop locomotor activity. The propulsive control system needs to be integrated with the postural control system to maintain body orientation. Moreover, the locomotor movements need to be steered so that the subject approaches the goal of the locomotor episode, or avoids colliding with elements in the environment or simply escapes at high speed. These different aspects will all be covered in the review.
Keywords: basal ganglia; central pattern generators; cerebellum; spinal cord; vestibular; visuomotor.
Similar articles
-
Neural bases of goal-directed locomotion in vertebrates--an overview.Brain Res Rev. 2008 Jan;57(1):2-12. doi: 10.1016/j.brainresrev.2007.06.027. Epub 2007 Aug 16. Brain Res Rev. 2008. PMID: 17916382 Review.
-
Locomotor pattern generation and descending control: a historical perspective.J Neurophysiol. 2023 Aug 1;130(2):401-416. doi: 10.1152/jn.00204.2023. Epub 2023 Jul 19. J Neurophysiol. 2023. PMID: 37465884 Review.
-
Modifications of locomotor pattern underlying escape behavior in the lamprey.J Neurophysiol. 2008 Jan;99(1):297-307. doi: 10.1152/jn.00903.2007. Epub 2007 Nov 14. J Neurophysiol. 2008. PMID: 18003880
-
Simple cellular and network control principles govern complex patterns of motor behavior.Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20027-32. doi: 10.1073/pnas.0906722106. Epub 2009 Nov 9. Proc Natl Acad Sci U S A. 2009. PMID: 19901329 Free PMC article.
-
The neural bases of vertebrate motor behaviour through the lens of evolution.Philos Trans R Soc Lond B Biol Sci. 2022 Feb 14;377(1844):20200521. doi: 10.1098/rstb.2020.0521. Epub 2021 Dec 27. Philos Trans R Soc Lond B Biol Sci. 2022. PMID: 34957847 Free PMC article.
Cited by
-
Spinal maps of motoneuron activity during human locomotion: neuromechanical considerations.Front Physiol. 2024 Jul 23;15:1389436. doi: 10.3389/fphys.2024.1389436. eCollection 2024. Front Physiol. 2024. PMID: 39108539 Free PMC article. Review.
-
The CPGs for Limbed Locomotion-Facts and Fiction.Int J Mol Sci. 2021 May 30;22(11):5882. doi: 10.3390/ijms22115882. Int J Mol Sci. 2021. PMID: 34070932 Free PMC article. Review.
-
When Spinal Neuromodulation Meets Sensorimotor Rehabilitation: Lessons Learned From Animal Models to Regain Manual Dexterity After a Spinal Cord Injury.Front Rehabil Sci. 2021 Dec 7;2:755963. doi: 10.3389/fresc.2021.755963. eCollection 2021. Front Rehabil Sci. 2021. PMID: 36188826 Free PMC article. Review.
-
How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry?Front Syst Neurosci. 2022 Mar 3;16:828532. doi: 10.3389/fnsys.2022.828532. eCollection 2022. Front Syst Neurosci. 2022. PMID: 35308565 Free PMC article. Review.
-
The Mesoscopic Connectome of the Cholinergic Pontomesencephalic Tegmentum.Front Neuroanat. 2022 May 17;16:843303. doi: 10.3389/fnana.2022.843303. eCollection 2022. Front Neuroanat. 2022. PMID: 35655583 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
