Altering of host larval (Spodoptera exigua) calcineurin activity in response to ascovirus infection

Pest Manag Sci. 2020 Mar;76(3):1048-1059. doi: 10.1002/ps.5615. Epub 2019 Oct 22.

Abstract

Background: Calcineurin (CaN) is involved in numerous cellular processes and Ca2+ -dependent signal transduction pathways. According to our previous transcriptome studies, thousands of host larval (Spodoptera exigua) transcripts were downregulated after the infection of Heliothis virescent ascovirus 3h (HvAV-3h), while the Spodoptera exigua calcineurin genes (SeCaNs) were significantly upregulated. To understand the regulation of SeCaNs in S. exigua larvae during the infection of HvAV-3h, the functions of CaN subunit A (SeCaN-SubA) and CaN binding protein (SeCaN-BP) were analysed.

Results: The in vitro assays indicated that the bacterial expressed SeCaN-SubA is an acid phosphatase, but no phosphatase activity was detected with the purified SeCaN-BP. The transcription level of SeCaN-SubA was upregulated after HvAV-3h infection and the CaN activity was significantly increased after HvAV-3h infection in S. exigua larvae. Interestingly, the SeCaN-BP transcripts were only detectable in the HvAV-3h infected larvae. Further immunoblotting results consistently agree with those obtained by qPCR, indicating that the infection of HvAV-3h causes the upregulated expression of SeCaN-SubA and the appearance of SeCaN-BP. An interaction between the cleaved SeCaN-SubA and SeCaN-BP was detected by co-immunoprecipitation assays, and the expression of SeCaN-BP in Spodoptera frugiperda-9 (Sf9) cells can help to increase the CaN activity of SeCaN-SubA. Further investigations with CaN inhibitors suggested that HvAV-3h. Further investigations with CaN inhibitors suggested that the inhibition on host larval CaN activity can also inhibit the viral replication of HvAV-3h.

Conclusion: The increase in CaN activity caused by HvAV-3h infection might be due to the upregulation of SeCaN-SubA and the induced expression of SeCaN-BP, and increased CaN activity is essential for ascoviral replication. © 2019 Society of Chemical Industry.

Keywords: CaN subunit; Heliothis virescens ascovirus 3h; HvAV-3h; PP2B; Spodoptera exigua; ascovirus; insect calcineurin.

MeSH terms

  • Animals
  • Ascoviridae*
  • Calcineurin
  • Larva
  • Spodoptera

Substances

  • Calcineurin