Background: Advances in the technology for percutaneous coronary angioplasty, such as coated stents, have reduced its complications, but restenosis remains an important clinical problem. The factors associated with an increased risk of restenosis include diabetes mellitus and multiple coronary artery disease. It is also possible that genetic factors play a role in restenosis although there are little data on this. We have investigated the association of three genetic markers of genes involved in inflammation leading to restenosis.
Materials and methods: In this case-control study, 306 unrelated Iranian patients who were thought to have restenosis on clinical grounds were investigated. Based on the results of angiography, 104 patients were found to have >50% stenosis within an implanted stent, and these were allocated to the in-stent restenosis (ISR) group; 202 patients with no in-stent stenosis or stenosis ≤50% were allocated to the non-ISR (NISR) group. Demographic data were collected from medical records. Biochemical parameters were measured using routine methods. Genotypes of the interleukin-10 (IL-10), annexin A5 (AnxA5), and tumor necrosis factor-alpha (TNFα) loci were determined using real-time polymerase chain reaction and a high-resolution melting assay.
Results: Fasting blood glucose, serum triglycerides, and serum high-sensitivity C-reactive protein (hs-CRP) concentrations were higher in the ISR group than in the NISR group (P < 0.05), and a history of diabetes mellitus was significantly related to the presence of restenosis (P < 0.001). There were no significant differences in the frequency of the genetic polymorphisms of IL-10, AnxA5, and TNFα genes and the presence of ISR.
Conclusion: After adjustment for clinical variables, the genetic polymorphisms at the IL-10, TNFα, and ANXA5 gene loci do not appear to be risk factors for >50% ISR in our population. However, our data suggested a significant association between diabetes mellitus, serum hs-CRP, stent type, and restenosis.
Keywords: Annexin A5; in-stent restenosis; interleukin-10; single-nucleotide polymorphism; tumor-necrotizing factor.