Boosting Interleukin-12 Antitumor Activity and Synergism with Immunotherapy by Targeted Delivery with isoDGR-Tagged Nanogold
- PMID: 31523920
- DOI: 10.1002/smll.201903462
Boosting Interleukin-12 Antitumor Activity and Synergism with Immunotherapy by Targeted Delivery with isoDGR-Tagged Nanogold
Abstract
The clinical use of interleukin-12 (IL12), a cytokine endowed with potent immunotherapeutic anticancer activity, is limited by systemic toxicity. The hypothesis is addressed that gold nanoparticles tagged with a tumor-homing peptide containing isoDGR, an αvβ3-integrin binding motif, can be exploited for delivering IL12 to tumors and improving its therapeutic index. To this aim, gold nanospheres are functionalized with the head-to-tail cyclized-peptide CGisoDGRG (Iso1) and murine IL12. The resulting nanodrug (Iso1/Au/IL12) is monodispersed, stable, and bifunctional in terms of αvβ3 and IL12-receptor recognition. Low-dose Iso1/Au/IL12, equivalent to 18-75 pg of IL12, induces antitumor effects in murine models of fibrosarcomas and mammary adenocarcinomas, with no evidence of toxicity. Equivalent doses of Au/IL12 (a nanodrug lacking Iso1) fail to delay tumor growth, whereas 15 000 pg of free IL12 is necessary to achieve similar effects. Iso1/Au/IL12 significantly increases tumor infiltration by innate immune cells, such as NK and iNKT cells, monocytes, and neutrophils. NK cell depletion completely inhibits its antitumor effects. Low-dose Iso1/Au/IL12 can also increase the therapeutic efficacy of adoptive T-cell therapy in mice with autochthonous prostate cancer. These findings indicate that coupling IL12 to isoDGR-tagged nanogold is a valid strategy for enhancing its therapeutic index and sustaining adoptive T-cell therapy.
Keywords: gold nanoparticles; immunotherapy; interleukin-12; isoDGR motif; αvβ3 integrin.
© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Enhancement of doxorubicin anti-cancer activity by vascular targeting using IsoDGR/cytokine-coated nanogold.J Nanobiotechnology. 2021 May 5;19(1):128. doi: 10.1186/s12951-021-00871-y. J Nanobiotechnology. 2021. PMID: 33952242 Free PMC article.
-
Nanogold Functionalized With Lipoamide-isoDGR: A Simple, Robust and Versatile Nanosystem for αvβ3-Integrin Targeting.Front Chem. 2021 May 28;9:690357. doi: 10.3389/fchem.2021.690357. eCollection 2021. Front Chem. 2021. PMID: 34124009 Free PMC article.
-
IsoDGR-tagged albumin: a new αvβ3 selective carrier for nanodrug delivery to tumors.Small. 2013 Mar 11;9(5):673-8. doi: 10.1002/smll.201202310. Epub 2012 Nov 12. Small. 2013. PMID: 23143930
-
Discovery of Cell-Surface Vimentin (CSV) as a Sarcoma Target and Development of CSV-Targeted IL12 Immune Therapy.Adv Exp Med Biol. 2020;1257:169-178. doi: 10.1007/978-3-030-43032-0_14. Adv Exp Med Biol. 2020. PMID: 32483739 Review.
-
Gold nanoparticles-mediated photothermal therapy and immunotherapy.Immunotherapy. 2018 Sep;10(13):1175-1188. doi: 10.2217/imt-2018-0029. Immunotherapy. 2018. PMID: 30236026 Review.
Cited by
-
Smart nanoparticles for cancer therapy.Signal Transduct Target Ther. 2023 Nov 3;8(1):418. doi: 10.1038/s41392-023-01642-x. Signal Transduct Target Ther. 2023. PMID: 37919282 Free PMC article. Review.
-
Gold Nanoparticles: Construction for Drug Delivery and Application in Cancer Immunotherapy.Pharmaceutics. 2023 Jul 2;15(7):1868. doi: 10.3390/pharmaceutics15071868. Pharmaceutics. 2023. PMID: 37514054 Free PMC article. Review.
-
Monitoring the in vivo siRNA release from lipid nanoparticles based on the fluorescence resonance energy transfer principle.Asian J Pharm Sci. 2023 Jan;18(1):100769. doi: 10.1016/j.ajps.2022.11.003. Epub 2022 Dec 7. Asian J Pharm Sci. 2023. PMID: 36698441 Free PMC article.
-
Cytokine Therapy Combined with Nanomaterials Participates in Cancer Immunotherapy.Pharmaceutics. 2022 Nov 26;14(12):2606. doi: 10.3390/pharmaceutics14122606. Pharmaceutics. 2022. PMID: 36559100 Free PMC article. Review.
-
Delivery of Theranostic Nanoparticles to Various Cancers by Means of Integrin-Binding Peptides.Int J Mol Sci. 2022 Nov 8;23(22):13735. doi: 10.3390/ijms232213735. Int J Mol Sci. 2022. PMID: 36430214 Free PMC article. Review.
References
-
- a) M. J. Brunda, L. Luistro, R. R. Warrier, R. B. Wright, B. R. Hubbard, M. Murphy, S. F. Wolf, M. K. Gately, J. Exp. Med. 1993, 178, 1223;
-
- b) B. A. Teicher, G. Ara, K. Menon, R. G. Schaub, Int. J. Cancer 1996, 65, 80;
-
- c) K. Kozar, R. Kaminski, T. Switaj, T. Oldak, E. Machaj, P. J. Wysocki, A. Mackiewicz, W. Lasek, M. Jakobisiak, J. Golab, Clin. Cancer Res. 2003, 9, 3124;
-
- d) B. A. Teicher, G. Ara, D. Buxton, J. Leonard, R. G. Schaub, Clin. Cancer Res. 1997, 3, 1661;
-
- e) W. Lasek, R. Zagozdzon, M. Jakobisiak, Cancer Immunol. Immunother. 2014, 63, 419;
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
