Elucidation of Structure-Activity Correlations in a Nickel Manganese Oxide Oxygen Evolution Reaction Catalyst by Operando Ni L-Edge X-ray Absorption Spectroscopy and 2p3d Resonant Inelastic X-ray Scattering

ACS Appl Mater Interfaces. 2019 Oct 23;11(42):38595-38605. doi: 10.1021/acsami.9b06752. Epub 2019 Oct 8.

Abstract

Herein, we report the synthesis and electrochemical oxygen evolution experiments for a graphene-supported Ni3MnO4 catalyst. The changes that occur at the Ni active sites during the electrocatalyic oxygen evolution reaction (OER) were elucidated by a combination of operando Ni L-edge X-ray absorption spectroscopy (XAS) and Ni 2p3d resonant inelastic X-ray scattering (RIXS). These data are compared to reference measurements on NiO, β-Ni(OH)2, β-NiOOH, and γ-NiOOH. Through this comparative analysis, we are able to show that under alkaline conditions (0.1 M KOH), the oxides of the Ni3MnO4 catalyst are converted to hydroxides. At the onset of catalysis (1.47 V), the β-Ni(OH)2-like phase is oxidized and converted to a dominantly γ-NiOOH phase. The present study thus challenges the notion that the β-NiOOH phase is the active phase in OER and provides further evidence that the γ-NiOOH phase is catalytically active. The ability to use Ni L-edge XAS and 2p3d RIXS to provide a rational basis for structure-activity correlations is highlighted.

Keywords: Ni 2p3d RIXS; heterogeneous catalysis; oxygen evolution reaction; soft X-ray RIXS; water oxidation reaction.