Human Odour Coding in the Yellow Fever Mosquito, Aedes aegypti

Sci Rep. 2019 Sep 16;9(1):13336. doi: 10.1038/s41598-019-49753-2.

Abstract

Insects use their olfactory systems to obtain chemical information on mating partners, oviposition sites and food. The yellow fever mosquito Aedes aegypti, an important vector of human infectious diseases, shows strong preference for human blood meals. This study investigated the chemical basis of host detection by characterizing the neuronal responses of antennal olfactory sensilla of female Ae. aegypti to 103 compounds from human skin emanations. The effect of blood feeding on the responses of olfactory sensilla to these odorants was examined as well. Sensilla SBTII, GP, and three functional subtypes of SST (SST1, SST2, and SST3) responded to most of the compounds tested. Olfactory receptor neurons (ORNs) 'A' and 'B' in the trichoid sensilla, either activated or inhibited, were involved in the odour coding process. Compounds from different chemical classes elicited responses with different temporal structures and different response patterns across the olfactory sensilla. Except for their increased responses to several odorants, blood-fed mosquitoes generally evoked reduced responses to specific aldehydes, alcohols, aliphatics/aromatics, ketones, and amines through the SST1, SST2, SBTI, SBTII and GP sensilla. The odorants eliciting diminished responses in female mosquitoes after blood feeding may be important in Ae. aegypti host-seeking activity and thus can be candidates for mosquito attractants in the process of this disease vector management.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aedes / genetics
  • Aedes / physiology*
  • Animals
  • Humans
  • Mosquito Vectors / physiology
  • Odorants*
  • Olfactory Receptor Neurons / physiology*
  • Sensilla / physiology*
  • Skin / chemistry
  • Smell / physiology