Objective: High-frequency-oscillations (HFO) and interictal-epileptic-spikes (IES) are spatial biomarkers of the epileptogenic-zone. Those HFO spatially and temporally co-occurring with IES (IES-HFO) are potentially superior biomarkers, their use is however challenged by the difficulty in detecting the low amplitude HFO riding the high-amplitude and steep-waveform of IES. We aim to develop an automatic HFO detector with an improved performance with respect to current methods and that also correctly distinguishes IES-HFO from IES occurring in isolation (isol-IES). We also aim to validate the biomarker-value of the automatic detections by utilizing them to localize a surrogate of the epileptogenic-zone.
Approach: We developed automatic-detectors of HFO-Ripples (80-250 Hz), HFO-FastRipples (250-500 Hz) and IES based on kernelized support-vector-machines (SVM). The training of the HFO-detectors was based on visually marked HFO and the parameter optimization during this training-process promoted the correct discernment between IES-HFO and isol-IES. Both HFO-detectors were benchmarked against other published detectors using databases with both visually marked and simulated gold-standards. The IES-detector was trained with a publicly available simulated database and tested against both simulated and visually marked gold-standards. To validate the detections' biomarker-value, the detectors were run on intracranial-EEGs from 8 patients and each with durations of 2-3 days, the detections' cumulated per-channel occurrence-rate was then used to predict the seizure-onset-zone as a surrogate of the epileptogenic-zone.
Main results: The HFO-detectors obtained at least 21 more F1-score points than previously published algorithms at the lowest signal-to-noise-ratio. The success achieved when discerning between IES-HFO and isol-IES was comparable to that of other published algorithms. The automatically detected IES-HFO and IES-Ripples showed the best biomarker-value to localize the epileptogenic-zone.
Significance: The developed detectors are publicly available and provide a reliable tool to further study HFO, IES-HFO and their value as biomarkers. The putative higher biomarker value from IES-HFO was validated on automatically-detected, long-term data.