Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 14 (9), e0222894
eCollection

Temporal Trends, Predictors, and Outcomes of Acute Kidney Injury and Hemodialysis Use in Acute Myocardial Infarction-Related Cardiogenic Shock

Affiliations

Temporal Trends, Predictors, and Outcomes of Acute Kidney Injury and Hemodialysis Use in Acute Myocardial Infarction-Related Cardiogenic Shock

Saraschandra Vallabhajosyula et al. PLoS One.

Abstract

Background: There are limited data on acute kidney injury (AKI) complicating acute myocardial infarction with cardiogenic shock (AMI-CS). This study sought to evaluate 15-year national prevalence, temporal trends and outcomes of AKI with no need for hemodialysis (AKI-ND) and requiring hemodialysis (AKI-D) following AMI-CS.

Methods: This was a retrospective cohort study from 2000-2014 from the National Inpatient Sample (20% stratified sample of all community hospitals in the United States). Adult patients (>18 years) admitted with a primary diagnosis of AMI and secondary diagnosis of CS were included. The primary outcome was in-hospital mortality in cohorts with no AKI, AKI-ND, and AKI-D. Secondary outcomes included predictors, resource utilization and disposition.

Results: During this 15-year period, 440,257 admissions for AMI-CS were included, with AKI in 155,610 (35.3%) and hemodialysis use in 14,950 (3.4%). Older age, black race, non-private insurance, higher comorbidity, organ failure, and use of cardiac and non-cardiac organ support were associated with the AKI development and hemodialysis use. There was a 2.6-fold higher adjusted risk of developing AKI in 2014 compared to 2000. Presence of AKI-ND and AKI-D was associated with a 1.3 and 1.7-fold higher adjusted risk of mortality. Compared to the cohort without AKI, AKI-ND and AKI-D were associated with longer length of stay (9±10, 12±13, and 18±19 days respectively; p<0.001) and higher hospitalization costs ($101,859±116,204, $159,804±190,766, and $265,875 ± 254,919 respectively; p<0.001).

Conclusion: AKI-ND and AKI-D are associated with higher in-hospital mortality and resource utilization in AMI-CS.

Conflict of interest statement

Dr. Jaffe has been a consultant for Beckman, Abbott, Siemens, ET Healthcare, Sphing6toec, Quidel, and Novartis. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1
Fig 1. Unadjusted and adjusted temporal trends of the incidence and in-hospital mortality of acute kidney injury and hemodialysis in AMI-CS.
1A: Unadjusted fifteen-year temporal trends of no AKI, AKI-ND, AKI-D in AMI-CS; 1B: Unadjusted fifteen-year temporal trends of in-hospital mortality in the cohorts of no AKI, AKI-ND, AKI-D in AMI-CS; 1C: Adjusted temporal trends for the incidence of AKI, hemodialysis use in AMI-CS*; 1D: Adjusted temporal trends for in-hospital mortality in cohorts with no AKI, AKI-ND and AKI-D in AMI-CS*; all p<0.001 for trend. *Adjusted for: age, sex, race, primary payer, socio-economic status, hospital location/teaching status, hospital bedsize, hospital region, comorbidity, acute organ dysfunction, cardiac arrest, use of coronary angiography, percutaneous coronary intervention, invasive hemodynamic assessment, mechanical circulatory support and invasive mechanical ventilation. Abbreviations: AKI: acute kidney injury; AKI-D: acute kidney injury requiring hemodialysis; AKI-ND: acute kidney injury with no need for hemodialysis; AMI: acute myocardial infarction; CS: cardiogenic shock.

Similar articles

See all similar articles

Cited by 3 articles

References

    1. Vallabhajosyula S, Barsness GW, Vallabhajosyula S. Multidisciplinary teams for cardiogenic shock. Aging (Albany NY). 2019;11(14):4774–6. 10.18632/aging.102104 . - DOI - PMC - PubMed
    1. Vallabhajosyula S, Dunlay SM, Barsness GW, Rihal CS, Holmes DR Jr., Prasad A. Hospital-level disparities in the outcomes of acute myocardial infarction with cardiogenic shock. Am J Cardiol. 2019;124(4):491–8. 10.1016/j.amjcard.2019.05.038 . - DOI - PubMed
    1. Vallabhajosyula S, Dunlay SM, Kashani K, Vallabhajosyula S, Vallabhajosyula S, Sundaragiri PR, et al. Temporal trends and outcomes of prolonged invasive mechanical ventilation and tracheostomy use in acute myocardial infarction with cardiogenic shock in the United States. Int J Cardiol. 2019;285:6–10. 10.1016/j.ijcard.2019.03.008 . - DOI - PubMed
    1. Vallabhajosyula S, Dunlay SM, Murphree DH, Barsness GW, Sandhu GS, Lerman A, et al. Cardiogenic shock in Takotsubo cardiomyopathy versus acute myocardial infarction: An 8-year national perspective on clinical characteristics, management, and outcomes. JACC Heart Fail. 2019; 7(6):469–476. 10.1016/j.jchf.2018.12.007 - DOI - PubMed
    1. Vallabhajosyula S, Dunlay SM, Prasad A, Kashani K, Sakhuja A, Gersh BJ, et al. Acute noncardiac organ failure in acute myocardial infarction with cardiogenic shock. J Am Coll Cardiol. 2019;73(14):1781–91. 10.1016/j.jacc.2019.01.053 . - DOI - PubMed

Publication types

MeSH terms

Feedback