Effect of the combination of high-frequency repetitive magnetic stimulation and neurotropin on injured sciatic nerve regeneration in rats

Neural Regen Res. 2020 Jan;15(1):145-151. doi: 10.4103/1673-5374.264461.

Abstract

Repetitive magnetic stimulation is effective for treating posttraumatic neuropathies following spinal or axonal injury. Neurotropin is a potential treatment for nerve injuries like demyelinating diseases. This study sought to observe the effects of high-frequency repetitive magnetic stimulation, neurotropin and their combined use in the treatment of peripheral nerve injury in 32 adult male Sprague-Dawley rats. To create a sciatic nerve injury model, a 10 mm-nerve segment of the left sciatic nerve was cut and rotated through 180° and each end restored continuously with interrupted sutures. The rats were randomly divided into four groups. The control group received only a reversed autograft in the left sciatic nerve with no treatment. In the high-frequency repetitive magnetic stimulation group, peripheral high-frequency repetitive magnetic stimulation treatment (20 Hz, 20 min/d) was delivered for 10 consecutive days after auto-grafting. In the neurotropin group, neurotropin therapy (0.96 NU/kg per day) was administrated for 10 consecutive days after surgery. In the combined group, the combination of peripheral high-frequency repetitive magnetic stimulation (20 Hz, 20 min/d) and neurotropin (0.96 NU/kg per day) was given for 10 consecutive days after the operation. The Basso-Beattie-Bresnahan locomotor rating scale was used to assess the behavioral recovery of the injured nerve. The sciatic functional index was used to evaluate the recovery of motor functions. Toluidine blue staining was performed to determine the number of myelinated fibers in the distal and proximal grafts. Immunohistochemistry staining was used to detect the length of axons marked by neurofilament 200. Our results reveal that the Basso-Beattie-Bresnahan locomotor rating scale scores, sciatic functional index, the number of myelinated fibers in distal and proximal grafts were higher and axon lengths were longer in the high-frequency repetitive magnetic stimulation, neurotropin and combined groups compared with the control group. These measures were not significantly different among the high-frequency repetitive magnetic stimulation, neurotropin and combined groups. Therefore, our results suggest that peripheral high-frequency repetitive magnetic stimulation or neurotropin can promote the repair of injured sciatic nerves, but their combined use seems to offer no significant advantage. This study was approved by the Animal Ethics Committee of the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China on December 23, 2014 (approval No. 2014keyan002-01).

Keywords: axon; myelinated nerve fibers; nerve regeneration; neurological rehabilitation; neurotropin; peripheral nerve injury; repetitive magnetic stimulation; sciatic nerve; trauma.