PbS Nanocrystals Made with Excess PbCl2 Have an Intrinsic Shell that Reduces Their Stokes Shift

J Phys Chem Lett. 2019 Oct 3;10(19):5897-5901. doi: 10.1021/acs.jpclett.9b01841. Epub 2019 Sep 19.

Abstract

The use of excess PbCl2 in the synthesis of PbS nanocrystals has become a convenient route to produce narrow-line-width infrared emitters. However, these materials have found limited adoption in optoelectronic devices-even compared to PbS nanocrystals prepared with lead oleate. Here, using both transmission electron microscopy and small-angle X-ray scattering, we show that excess PbCl2 results in larger-diameter PbS nanocrystals for the same excitonic features, which is consistent with the formation of an intrinsic insulating shell. We observe further differences in excess-lead-chloride nanocrystals consistent with a shell, including lattice strain and smaller Stokes shifts for intermediate sizes (⌀: 4.8-6.8 nm) that match the passivation/rigidification predicted for a chloride-terminate surface. Our results clarify and rationalize the divergent properties of PbS nanocrystals prepared using different synthetic methodologies, give guidance for device implementation, and offer a new target for synthetic control.