DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila
- PMID: 31584428
- PMCID: PMC6828327
- DOI: 10.7554/eLife.48571
DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila
Abstract
Studying how neural circuits orchestrate limbed behaviors requires the precise measurement of the positions of each appendage in three-dimensional (3D) space. Deep neural networks can estimate two-dimensional (2D) pose in freely behaving and tethered animals. However, the unique challenges associated with transforming these 2D measurements into reliable and precise 3D poses have not been addressed for small animals including the fly, Drosophila melanogaster. Here, we present DeepFly3D, a software that infers the 3D pose of tethered, adult Drosophila using multiple camera images. DeepFly3D does not require manual calibration, uses pictorial structures to automatically detect and correct pose estimation errors, and uses active learning to iteratively improve performance. We demonstrate more accurate unsupervised behavioral embedding using 3D joint angles rather than commonly used 2D pose data. Thus, DeepFly3D enables the automated acquisition of Drosophila behavioral measurements at an unprecedented level of detail for a variety of biological applications.
Keywords: 3D pose estimation; D. melanogaster; animal behavior; computer vision; deep learning; neuroscience; unsupervised classification.
© 2019, Günel et al.
Conflict of interest statement
SG, HR, DM, JC, PR, PF No competing interests declared
Figures
Similar articles
-
Anipose: A toolkit for robust markerless 3D pose estimation.Cell Rep. 2021 Sep 28;36(13):109730. doi: 10.1016/j.celrep.2021.109730. Cell Rep. 2021. PMID: 34592148 Free PMC article.
-
LiftPose3D, a deep learning-based approach for transforming two-dimensional to three-dimensional poses in laboratory animals.Nat Methods. 2021 Aug;18(8):975-981. doi: 10.1038/s41592-021-01226-z. Epub 2021 Aug 5. Nat Methods. 2021. PMID: 34354294 Free PMC article.
-
A deep learning approach for pose estimation from volumetric OCT data.Med Image Anal. 2018 May;46:162-179. doi: 10.1016/j.media.2018.03.002. Epub 2018 Mar 10. Med Image Anal. 2018. PMID: 29550582
-
3D Human Pose Machines with Self-Supervised Learning.IEEE Trans Pattern Anal Mach Intell. 2020 May;42(5):1069-1082. doi: 10.1109/TPAMI.2019.2892452. Epub 2019 Jan 14. IEEE Trans Pattern Anal Mach Intell. 2020. PMID: 30640601
-
FicTrac: a visual method for tracking spherical motion and generating fictive animal paths.J Neurosci Methods. 2014 Mar 30;225:106-19. doi: 10.1016/j.jneumeth.2014.01.010. Epub 2014 Feb 1. J Neurosci Methods. 2014. PMID: 24491637
Cited by
-
A three-dimensional virtual mouse generates synthetic training data for behavioral analysis.Nat Methods. 2021 Apr;18(4):378-381. doi: 10.1038/s41592-021-01103-9. Epub 2021 Apr 5. Nat Methods. 2021. PMID: 33820989 Free PMC article.
-
Open-source tools for behavioral video analysis: Setup, methods, and best practices.Elife. 2023 Mar 23;12:e79305. doi: 10.7554/eLife.79305. Elife. 2023. PMID: 36951911 Free PMC article. Review.
-
3D Bird Reconstruction: a Dataset, Model, and Shape Recovery from a Single View.Comput Vis ECCV. 2020;12363:1-17. doi: 10.1007/978-3-030-58523-5_1. Epub 2020 Dec 4. Comput Vis ECCV. 2020. PMID: 35822859 Free PMC article.
-
OpenMonkeyChallenge: Dataset and Benchmark Challenges for Pose Estimation of Non-human Primates.Int J Comput Vis. 2023 Jan;131(1):243-258. doi: 10.1007/s11263-022-01698-2. Epub 2022 Oct 16. Int J Comput Vis. 2023. PMID: 37576929 Free PMC article.
-
ONIX: a unified open-source platform for multimodal neural recording and perturbation during naturalistic behavior.Nat Methods. 2025 Jan;22(1):187-192. doi: 10.1038/s41592-024-02521-1. Epub 2024 Nov 11. Nat Methods. 2025. PMID: 39528678
References
-
- Andriluka M, Pishchulin L, Gehler P, Schiele B. 2d human pose estimation: new benchmark and state of the art analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2014. pp. 3686–3693. - DOI
-
- Bishop CM. Pattern Recognition and Machine Learning. Springer; 2006.
Publication types
MeSH terms
Grants and funding
- 175667/Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung/International
- 181239/Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung/International
- iPhD/EPFL/International
- JRC Project/Microsoft Research/International
- 2018.0483/Swiss Government Excellence Postdoctoral Scholarship/International
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
