Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix
- PMID: 31588918
- PMCID: PMC6778852
- DOI: 10.1107/S2059798319011471
Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix
Abstract
Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method. Phenix is a comprehensive software package for macromolecular structure determination that handles data from any of these techniques. Tasks performed with Phenix include data-quality assessment, map improvement, model building, the validation/rebuilding/refinement cycle and deposition. Each tool caters to the type of experimental data. The design of Phenix emphasizes the automation of procedures, where possible, to minimize repetitive and time-consuming manual tasks, while default parameters are chosen to encourage best practice. A graphical user interface provides access to many command-line features of Phenix and streamlines the transition between programs, project tracking and re-running of previous tasks.
Keywords: C++; Phenix; Python; X-rays; automation; cctbx; cryo-EM; diffraction; macromolecular crystallography; neutrons.
open access.
Figures
Comment in
-
Deriving and refining atomic models in crystallography and cryo-EM: the latest Phenix tools to facilitate structure analysis.Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):878-881. doi: 10.1107/S2059798319013391. Epub 2019 Oct 1. Acta Crystallogr D Struct Biol. 2019. PMID: 31588919 Free PMC article.
Similar articles
-
The Phenix software for automated determination of macromolecular structures.Methods. 2011 Sep;55(1):94-106. doi: 10.1016/j.ymeth.2011.07.005. Epub 2011 Jul 29. Methods. 2011. PMID: 21821126 Free PMC article.
-
CERES: a cryo-EM re-refinement system for continuous improvement of deposited models.Acta Crystallogr D Struct Biol. 2021 Jan 1;77(Pt 1):48-61. doi: 10.1107/S2059798320015879. Epub 2021 Jan 1. Acta Crystallogr D Struct Biol. 2021. PMID: 33404525 Free PMC article.
-
Macromolecular refinement of X-ray and cryoelectron microscopy structures with Phenix/OPLS3e for improved structure and ligand quality.Structure. 2021 Aug 5;29(8):913-921.e4. doi: 10.1016/j.str.2021.03.011. Epub 2021 Apr 5. Structure. 2021. PMID: 33823127 Free PMC article.
-
Interactive model building in neutron macromolecular crystallography.Methods Enzymol. 2020;634:201-224. doi: 10.1016/bs.mie.2019.11.017. Epub 2019 Dec 20. Methods Enzymol. 2020. PMID: 32093833 Review.
-
Boxes of Model Building and Visualization.Methods Mol Biol. 2017;1607:491-548. doi: 10.1007/978-1-4939-7000-1_21. Methods Mol Biol. 2017. PMID: 28573587 Review.
Cited by
-
Expression, Purification, and Cryo-EM Structural Analysis of an Outer Membrane Secretin Channel.Methods Mol Biol. 2024;2778:291-310. doi: 10.1007/978-1-0716-3734-0_18. Methods Mol Biol. 2024. PMID: 38478285
-
The catalytic mechanism of the RNA methyltransferase METTL3.Elife. 2024 Mar 12;12:RP92537. doi: 10.7554/eLife.92537. Elife. 2024. PMID: 38470714 Free PMC article.
-
P. aeruginosa CtpA protease adopts a novel activation mechanism to initiate the proteolytic process.EMBO J. 2024 Mar 11. doi: 10.1038/s44318-024-00069-6. Online ahead of print. EMBO J. 2024. PMID: 38467832
-
Quantifying how single dose Ad26.COV2.S vaccine efficacy depends on Spike sequence features.Nat Commun. 2024 Mar 11;15(1):2175. doi: 10.1038/s41467-024-46536-w. Nat Commun. 2024. PMID: 38467646
-
The structure of inactivated mature tick-borne encephalitis virus at 3.0 Å resolution.Emerg Microbes Infect. 2024 Dec;13(1):2313849. doi: 10.1080/22221751.2024.2313849. Epub 2024 Mar 11. Emerg Microbes Infect. 2024. PMID: 38465849 Free PMC article.
References
-
- Abrahams, D. & Grosse-Kunstleve, R. W. (2003). C/C++ Users J. 21, 29–36.
-
- Adams, P. D., Afonine, P. V., Baskaran, K., Berman, H. M., Berrisford, J., Bricogne, G., Brown, D. G., Burley, S. K., Chen, M., Feng, Z., Flensburg, C., Gutmanas, A., Hoch, J. C., Ikegawa, Y., Kengaku, Y., Krissinel, E., Kurisu, G., Liang, Y., Liebschner, D., Mak, L., Markley, J. L., Moriarty, N. W., Murshudov, G. N., Noble, M., Peisach, E., Persikova, I., Poon, B. K., Sobolev, O. V., Ulrich, E. L., Velankar, S., Vonrhein, C., Westbrook, J., Wojdyr, M., Yokochi, M. & Young, J. Y. (2019). Acta Cryst. D75, 451–454. - PMC - PubMed
-
- Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. (2010). Acta Cryst. D66, 213–221. - PMC - PubMed
-
- Adams, P. D., Grosse-Kunstleve, R. W., Hung, L.-W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K. & Terwilliger, T. C. (2002). Acta Cryst. D58, 1948–1954. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
