Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 19 (2), 540-551

Exportin 1 Inhibition Induces Nerve Growth Factor Receptor Expression to Inhibit the NF-κB Pathway in Preclinical Models of Pediatric High-Grade Glioma

Affiliations

Exportin 1 Inhibition Induces Nerve Growth Factor Receptor Expression to Inhibit the NF-κB Pathway in Preclinical Models of Pediatric High-Grade Glioma

John A DeSisto et al. Mol Cancer Ther.

Abstract

High-grade glioma (HGG) is the leading cause of cancer-related death among children. Selinexor, an orally bioavailable, reversible inhibitor of the nuclear export protein, exportin 1, is in clinical trials for a range of cancers, including HGG. It inhibits the NF-κB pathway and strongly induces the expression of nerve growth factor receptor (NGFR) in preclinical cancer models. We hypothesized that selinexor inhibits NF-κB via upregulation of NGFR. In HGG cells, sensitivity to selinexor correlated with increased induction of cell surface NGFR expression. Knocking down NGFR in HGG cells increased proliferation, anchorage-independent growth, stemness markers, and levels of transcriptionally available nuclear NF-κB not bound to IκB-α, while decreasing apoptosis and sensitivity to selinexor. Increasing IκB-α levels in NGFR knockdown cells restored sensitivity to selinexor. Overexpression of NGFR using cDNA reduced levels of free nuclear NF-κB, decreased stemness markers, and increased markers of cellular differentiation. In all HGG lines tested, selinexor decreased phosphorylation of NF-κB at serine 536 (a site associated with increased transcription of proliferative and inflammatory genes). Because resistance to selinexor monotherapy occurred in our in vivo model, we screened selinexor with a panel of FDA-approved anticancer agents. Bortezomib, a proteasome inhibitor that inhibits the NF-κB pathway through a different mechanism than selinexor, showed synergy with selinexor against HGG in vitro Our results help elucidate selinexor's mechanism of action and identify NGFR as a potential biomarker of its effect in HGG and in addition suggest a combination therapy strategy for these challenging tumors.

Similar articles

See all similar articles

Publication types

LinkOut - more resources

Feedback