CR-Unet: A Composite Network for Ovary and Follicle Segmentation in Ultrasound Images
- PMID: 31603808
- DOI: 10.1109/JBHI.2019.2946092
CR-Unet: A Composite Network for Ovary and Follicle Segmentation in Ultrasound Images
Abstract
Transvaginal ultrasound (TVUS) is widely used in infertility treatment. The size and shape of the ovary and follicles must be measured manually for assessing their physiological status by sonographers. However, this process is extremely time-consuming and operator-dependent. In this study, we propose a novel composite network, namely CR-Unet, to simultaneously segment the ovary and follicles in TVUS. The CR-Unet incorporates the spatial recurrent neural network (RNN) into a plain U-Net. It can effectively learn multi-scale and long-range spatial contexts to combat the challenges of this task, such as the poor image quality, low contrast, boundary ambiguity, and complex anatomy shapes. We further adopt deep supervision strategy to make model training more effective and efficient. In addition, self-supervision is employed to iteratively refine the segmentation results. Experiments on 3204 TVUS images from 219 patients demonstrate the proposed method achieved the best segmentation performance compared to other state-of-the-art methods for both the ovary and follicles, with a Dice Similarity Coefficient (DSC) of 0.912 and 0.858, respectively.
Similar articles
-
Deep Learning based Quantification of Ovary and Follicles using 3D Transvaginal Ultrasound in Assisted Reproduction.Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2109-2112. doi: 10.1109/EMBC44109.2020.9176703. Annu Int Conf IEEE Eng Med Biol Soc. 2020. PMID: 33018422
-
Endometrium segmentation on transvaginal ultrasound image using key-point discriminator.Med Phys. 2019 Sep;46(9):3974-3984. doi: 10.1002/mp.13677. Epub 2019 Jul 31. Med Phys. 2019. PMID: 31230366
-
Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.Med Phys. 2018 Oct;45(10):4558-4567. doi: 10.1002/mp.13147. Epub 2018 Sep 19. Med Phys. 2018. PMID: 30136285 Free PMC article.
-
Ultrasound assessment of the ovary in the infertile woman.Semin Reprod Med. 2008 May;26(3):217-22. doi: 10.1055/s-2008-1076140. Semin Reprod Med. 2008. PMID: 18504696 Review.
-
Computerized detection and recognition of follicles in ovarian ultrasound images: a review.Med Biol Eng Comput. 2012 Dec;50(12):1201-12. doi: 10.1007/s11517-012-0956-y. Epub 2012 Sep 26. Med Biol Eng Comput. 2012. PMID: 23011079 Review.
Cited by
-
Using AI Segmentation Models to Improve Foreign Body Detection and Triage from Ultrasound Images.Bioengineering (Basel). 2024 Jan 29;11(2):128. doi: 10.3390/bioengineering11020128. Bioengineering (Basel). 2024. PMID: 38391614 Free PMC article.
-
Retinal vessel segmentation method based on RSP-SA Unet network.Med Biol Eng Comput. 2024 Feb;62(2):605-620. doi: 10.1007/s11517-023-02960-6. Epub 2023 Nov 15. Med Biol Eng Comput. 2024. PMID: 37964177
-
Performance Analysis of Segmentation and Classification of CT-Scanned Ovarian Tumours Using U-Net and Deep Convolutional Neural Networks.Diagnostics (Basel). 2023 Jul 5;13(13):2282. doi: 10.3390/diagnostics13132282. Diagnostics (Basel). 2023. PMID: 37443676 Free PMC article.
-
DMFF-Net: A dual encoding multiscale feature fusion network for ovarian tumor segmentation.Front Public Health. 2023 Jan 11;10:1054177. doi: 10.3389/fpubh.2022.1054177. eCollection 2022. Front Public Health. 2023. PMID: 36711337 Free PMC article.
-
Cascaded Segmentation U-Net for Quality Evaluation of Scraping Workpiece.Sensors (Basel). 2023 Jan 15;23(2):998. doi: 10.3390/s23020998. Sensors (Basel). 2023. PMID: 36679795 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
