Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 2019

Progress in the Study of Genome Size Evolution in Asteraceae: Analysis of the Last Update

Affiliations

Progress in the Study of Genome Size Evolution in Asteraceae: Analysis of the Last Update

Daniel Vitales et al. Database (Oxford).

Abstract

The Genome Size in Asteraceae Database (GSAD, http://www.asteraceaegenomesize.com) has been recently updated, with data from papers published or in press until July 2018. This constitutes the third release of GSAD, currently containing 4350 data entries for 1496 species, which represent a growth of 22.52% in the number of species with available genome size data compared with the previous release, and a growth of 57.72% in terms of entries. Approximately 6% of Asteraceae species are covered in terms of known genome sizes. The number of source papers included in this release (198) means a 48.87% increase with respect to release 2.0. The significant data increase was exploited to study the genome size evolution in the family from a phylogenetic perspective. Our results suggest that the role of chromosome number in genome size diversity within Asteraceae is basically associated to polyploidy, while dysploidy would only cause minor variation in the DNA amount along the family. Among diploid taxa, we found that the evolution of genome size shows a strong phylogenetic signal. However, this trait does not seem to evolve evenly across the phylogeny, but there could be significant scale and clade-dependent patterns. Our analyses indicate that the phylogenetic signal is stronger at low taxonomic levels, with certain tribes standing out as hotspots of autocorrelation between genome size and phylogeny. Finally, we also observe meaningful associations among nuclear DNA content on Asteraceae species and other phenotypical and ecological traits (i.e. plant habit and invasion ability). Overall, this study emphasizes the need to continue generating and analysing genome size data in order to puzzle out the evolution of this parameter and its many biological correlates.

Figures

Figure 1
Figure 1
Mean number of Asteraceae genome size estimates reported per year over 13 successive 4-year periods between 1965 and 2018, the first period comprising 6 years. Data taken from GSAD ‘Genome Size in Asteraceae Database’ (Release 3.0, July 2018).
Figure 2
Figure 2
Ancestral genome size (2C) reconstruction in Asteraceae, indicating the ancestral value for the whole family (*) as well as for the best represented subfamilies (i.e. Carduoideae, Cichorioideae and Asteroideae) and tribes within the Asteroideae. Box plot shows the distribution of 2C values across the largest subfamilies, with horizontal lines representing median values and whiskers standard deviation.
Figure 3
Figure 3
Genome size of the invasive species included in GSAD and the mean GS values of their respective genera (red and blue bars, respectively). Error bars represent SD obtained from the GS values of the genera.

Similar articles

See all similar articles

References

    1. Swift H.H. (1950) The desoxyribose nucleic acid content of animal nuclei. Physiol. Zool., 23, 169–198. - PubMed
    1. Fedoroff N.V. (2012) Transposable elements, epigenetics, and genome evolution. Science, 338, 758–767. - PubMed
    1. Garcia S., Leitch I.J., Anadon–Rosell A. et al. (2014) Recent updates and developments to plant genome size databases. Nucleic Acids Res., 42, D1159–D1166. - PMC - PubMed
    1. Grime J.P. and Mowforth M.A. (1982) Variation in genome size—an ecological interpretation. Nature, 299, 151.
    1. Bennett S.T. and Thomas S.M. (1991) Karyological analysis and genome size in Milium (Gramineae) with special reference to polyploidy and chromosomal evolution. Genome, 34, 868–878.

Publication types

Feedback