Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 1;79(23):5958-5970.
doi: 10.1158/0008-5472.CAN-19-0840. Epub 2019 Oct 14.

Cleaved Caspase-3 Transcriptionally Regulates Angiogenesis-Promoting Chemotherapy Resistance

Affiliations

Cleaved Caspase-3 Transcriptionally Regulates Angiogenesis-Promoting Chemotherapy Resistance

Antoine Bernard et al. Cancer Res. .

Abstract

Caspases are well known for their role in apoptosis. Recently, nonapoptotic roles of caspases have been identified, however, these noncanonical roles are not well documented and the mechanisms involved are not fully understood. Here, we studied the role of cleaved caspase-3 using human- and mouse-proficient caspase-3 cancer cell lines and human-deficient caspase-3 cancer cells. Cleaved caspase-3 functioned as a transcription factor and directly bound to DNA. A DNA-binding domain was identified in the small subunit of caspase-3 and an active conformation was essential for caspase-3 transcriptional activity. Caspase-3 DNA binding enhanced angiogenesis by upregulating the expression of proangiogenic genes and by activating pathways that promoted endothelial cell activation. Some proapoptotic genes were downregulated in caspase-3-proficient cells. Inhibiting caspase-3 increased the efficacy of chemotherapy and decreased spontaneous tumor development. These data highlight a novel nonapoptotic role of caspase-3 and suggest that cleaved caspase-3 could be a new therapeutic target in cancer. SIGNIFICANCE: These findings report a noncanonical function of caspase-3 by demonstrating its ability to transcriptionally regulate the VEGFR pathway.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances