Single nucleotide mapping of trait space reveals Pareto fronts that constrain adaptation

Nat Ecol Evol. 2019 Nov;3(11):1539-1551. doi: 10.1038/s41559-019-0993-0. Epub 2019 Oct 14.

Abstract

Trade-offs constrain the improvement of performance of multiple traits simultaneously. Such trade-offs define Pareto fronts, which represent a set of optimal individuals that cannot be improved in any one trait without reducing performance in another. Surprisingly, experimental evolution often yields genotypes with improved performance in all measured traits, perhaps indicating an absence of trade-offs at least in the short term. Here we densely sample adaptive mutations in Saccharomyces cerevisiae to ask whether first-step adaptive mutations result in trade-offs during the growth cycle. We isolated thousands of adaptive clones evolved under carefully chosen conditions and quantified their performances in each part of the growth cycle. We too find that some first-step adaptive mutations can improve all traits to a modest extent. However, our dense sampling allowed us to identify trade-offs and establish the existence of Pareto fronts between fermentation and respiration, and between respiration and stationary phases. Moreover, we establish that no single mutation in the ancestral genome can circumvent the detected trade-offs. Finally, we sequenced hundreds of these adaptive clones, revealing new targets of adaptation and defining the genetic basis of the identified trade-offs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acclimatization
  • Adaptation, Physiological*
  • Genetic Fitness*
  • Nucleotide Mapping
  • Phenotype