Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording

J Neural Eng. 2019 Dec 13;17(1):016010. doi: 10.1088/1741-2552/ab4dbb.

Abstract

Objective: As electrodes are required to interact with sub-millimeter neural structures, innovative microfabrication processes are required to enable fabrication of microdevices involved in such stimulation and/or recording. This requires the development of highly integrated and miniaturized systems, comprising die-integration-compatible technology and flexible microelectrodes. To elicit selective stimulation and recordings of sub-neural structures, such microfabrication process flow can beneficiate from the integration of titanium nitride (TiN) microelectrodes onto a polyimide substrate. Finally, assembling onto cuffs is required, as well as electrode characterization.

Approach: Flexible TiN microelectrode array integration and miniaturization was achieved through microfabrication technology based on microelectromechanical systems (MEMS) and complementary metal-oxide semiconductor processing techniques and materials. They are highly reproducible processes, granting extreme control over the feature size and shape, as well as enabling the integration of on-chip electronics. This design is intended to enhance the integration of future electronic modules, with high gains on device miniaturization.

Main results: (a) Fabrication of two electrode designs, (1) 2 mm long array with 14 TiN square-shaped microelectrodes (80 × 80 µm2), and (2) an electrode array with 2 mm × 80 µm contacts. The average impedances at 1 kHz were 59 and 5.5 kΩ, respectively, for the smaller and larger contacts. Both designs were patterned on a flexible substrate and directly interconnected with a silicon chip. (b) Integration of flexible microelectrode array onto a cuff electrode designed for acute stimulation of the sub-millimeter nerves. (c) The TiN electrodes exhibited capacitive charge transfer, a water window of -0.6 V to 0.8 V, and a maximum charge injection capacity of 154 ± 16 µC cm-2.

Significance: We present the concept, fabrication and characterization of composite and flexible cuff electrodes, compatible with post-processing and MEMS packaging technologies, which allow for compact integration with control, readout and RF electronics. The fabricated TiN microelectrodes were electrochemically characterized and exhibited a comparable performance to other state-of-the-art electrodes for neural stimulation and recording. Therefore, the presented TiN-on-polyimide microelectrodes, released from silicon wafers, are a promising solution for neural interfaces targeted at sub-millimeter nerves, which may benefit from future upgrades with die-electronic modules.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dielectric Spectroscopy / methods
  • Electrodes, Implanted*
  • Equipment Design / instrumentation
  • Equipment Design / methods*
  • Microelectrodes
  • Miniaturization / instrumentation
  • Miniaturization / methods*
  • Resins, Synthetic / chemistry*
  • Titanium / chemistry*

Substances

  • Resins, Synthetic
  • polyimide resin
  • titanium nitride
  • Titanium