[Research progress on the monitoring methods of atmospheric nitrogen deposition]

Ying Yong Sheng Tai Xue Bao. 2019 Oct;30(10):3605-3614. doi: 10.13287/j.1001-9332.201910.008.
[Article in Chinese]

Abstract

As an important component of global nitrogen (N) biogeochemical cycle, atmospheric N deposition refers to the removal process of reactive N, including oxidized N (NOy) and reduced N (NHx), from the atmosphere to earth surface through dry and wet deposition. Nitrogen deposition can exert important impacts on the structure and functioning of both terrestrial and aquatic ecosystems. Increasing N deposition poses a potential threat to natural ecosystems and human health. It is a challenge to accurately monitor the composition and flux of dry and wet N deposition in different ecosystems, using a unified technology. Here, we reviewed the research progress on monitoring methods of dry and wet N deposition in China and aboard, including micrometeorology, inferential method, model estimation, surrogate surface, precipitation collection, and ion exchange resin methods. We further discussed the advantages and disadvantages of each method in terms of its applications at regional, national, and global scales. This review would provide a methodological support to establish national monitoring network for atmospheric N deposition.

大气氮沉降是全球氮素生物地球化学循环中的重要环节,指包括氧化态(NOy)和还原态(NHx)的活性氮通过干、湿沉降两种方式从大气中移除并降落到地表的过程,对陆地和水生生态系统的结构和功能有重要影响.日益增加的氮沉降对自然生态系统和人类健康构成潜在威胁,如何准确监测不同生态系统的干、湿氮沉降的组成和通量,建立统一的监测技术方法是近年来的研究热点和难点之一.本文详细综述了近年来国内外干、湿氮沉降的监测方法,包括微气象学法、推算法、模型法、替代面法、降水采集法和离子交换树脂法等.并结合其在区域、国家及全球尺度的应用对比总结了不同方法的优缺点,为建立全国性的氮沉降监测网络提供方法学的支持.

Keywords: atmospheric nitrogen deposition; dry deposition; ecological environmental benefit; monitoring method; wet deposition.

Publication types

  • Review

MeSH terms

  • Air Pollutants*
  • Atmosphere
  • China
  • Ecosystem
  • Environmental Monitoring
  • Humans
  • Nitrogen*

Substances

  • Air Pollutants
  • Nitrogen