The effects of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017

J Anim Sci. 2020 Jan 1;98(1):skz291. doi: 10.1093/jas/skz291.

Abstract

The U.S. dairy industry considerably reduced environmental impacts between 1944 and 2007, primarily through improved dairy cow productivity. However, although milk yield per cow has increased over the past decade, whole-system environmental impact analyses have not been conducted over this time period, during which environmental modeling science has improved considerably. The objective of this study was to compare the environmental impact of U.S. dairy cattle production in 2007-2017. A deterministic model based on population demographics, metabolism, and nutrient requirements of dairy cattle was used to estimate resource inputs, nutrient excretion, and greenhouse gas (GHG) emissions per 1.0 × 106 t (one million metric t or MMT) of energy-corrected milk (ECM) produced in 2007 and 2017. System boundaries extended from the manufacture and transport of cropping inputs to milk at the farm gate. Milk transport, processing, and retail were not included. Dairy systems were modeled using typical management practices, herd population dynamics, and production data from U.S. dairy farms. Cropping data were sourced from national databases. The resources required to produce 1.0 MMT ECM in 2017 were considerably reduced relative to those required in 2007, with 2017 production systems using 74.8% of the cattle, 82.7% of the feedstuffs, 79.2% of the land, and 69.5% of the water as compared to 2007. Waste outputs were similarly reduced, with the 2017 U.S. dairy industry producing 79.4%, 82.5%, and 85.7% of the manure, N, and P excretion, respectively. Dairy production in 2017 emitted 80.9% of the CH4 and 81.5% of the N2O per 1.0 MMT ECM compared to 2007. Enteric and manure emissions contributed the major proportion (80%) of GHG emissions per unit of milk, with lesser contributions from cropping (7.6%) and fertilizer application (5.3%). The GHG emissions per 1.0 MMT ECM produced in 2017 were 80.8% of equivalent milk production in 2007. Consequently, although total U.S. ECM production increased by 24.9% between 2007 and 2017, total GHG emissions from this milk production increased by only 1.0%. In line with previous historical analyses, the U.S. dairy industry has made remarkable productivity gains and environmental progress over time. To maintain this culture of continuous improvement, the dairy industry must build on gains made to date and demonstrate its commitment to reducing environmental impacts while improving both economic viability and social acceptability.

Keywords: carbon footprint; dairy; dilution of maintenance; environmental impact; greenhouse gas; productive efficiency.

MeSH terms

  • Animal Feed
  • Animals
  • Carbon Footprint*
  • Cattle / physiology*
  • Dairying*
  • Diet / veterinary
  • Environment*
  • Farms
  • Female
  • Greenhouse Effect
  • Milk / metabolism*
  • United States