Purpose: Biomarkers for disease-specific survival (DSS) in early-stage melanoma are needed to select patients for adjuvant immunotherapy and accelerate clinical trial design. We present a pathology-based computational method using a deep neural network architecture for DSS prediction.
Experimental design: The model was trained on 108 patients from four institutions and tested on 104 patients from Yale School of Medicine (YSM, New Haven, CT). A receiver operating characteristic (ROC) curve was generated on the basis of vote aggregation of individual image sequences, an optimized cutoff was selected, and the computational model was tested on a third independent population of 51 patients from Geisinger Health Systems (GHS).
Results: Area under the curve (AUC) in the YSM patients was 0.905 (P < 0.0001). AUC in the GHS patients was 0.880 (P < 0.0001). Using the cutoff selected in the YSM cohort, the computational model predicted DSS in the GHS cohort based on Kaplan-Meier (KM) analysis (P < 0.0001).
Conclusions: The novel method presented is applicable to digital images, obviating the need for sample shipment and manipulation and representing a practical advance over current genetic and IHC-based methods.
©2019 American Association for Cancer Research.