Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 141 (45), 18064-18074

A [2]Rotaxane-Based Circularly Polarized Luminescence Switch


A [2]Rotaxane-Based Circularly Polarized Luminescence Switch

Arthur H G David et al. J Am Chem Soc.


A rotaxane-based molecular shuttle has been synthesized in which the switching of the position of a fluorescent macrocycle on the thread turns "on" or "off" the circularly polarized luminescence (CPL) of the system while maintaining similar fluorescence profiles and quantum yields in both states. The chiroptical activity relies on the chiral information transfer from an ammonium salt incorporating d- or l-phenylalanine residues as chiral stereogenic covalent units to an otherwise achiral crown ether macrocycle bearing a luminescent 2,2'-bipyrene unit when they interact through hydrogen bonding. Each enantiomeric thread induces CPL responses of opposite signs on the macrocycle. Upon addition of base, the switching of the position of the macrocycle to a triazolium group disables the chiral information transfer to the macrocycle, switching "off" the CPL response. The in situ switching upon several acid/base cycles is also demonstrated.

Conflict of interest statement

The authors declare no competing financial interest.

Similar articles

See all similar articles


    1. Sauvage J. P.; Dietrich-Buchecker C.Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology; Wiley-VCH: Weinheim, 1999.
    2. Bruns C. J.; Stoddart J. F.The Fundamentals of Making Mechanical Bonds; John Wiley & Sons: Hoboken, 2016.
    1. Xue M.; Yang Y.; Chi X.; Yan X.; Huang F. Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chem. Rev. 2015, 115, 7398–7501. 10.1021/cr5005869. - DOI - PubMed
    1. Evans N. H.; Beer P. D. Progress in the synthesis and exploitation of catenanes since the Millennium. Chem. Soc. Rev. 2014, 43, 4658–4683. 10.1039/c4cs00029c. - DOI - PubMed
    2. Gil-Ramírez G.; Leigh D. A.; Stephens A. J. Catenanes: Fifty Years of Molecular Links. Angew. Chem., Int. Ed. 2015, 54, 6110–6150. 10.1002/anie.201411619. - DOI - PMC - PubMed
    1. Balzani V.; Credi A.; Raymo F. M.; Stoddart J. F. Artificial Molecular Machines. Angew. Chem., Int. Ed. 2000, 39, 3348–3391. 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X. - DOI - PubMed
    2. Kay E. R.; Leigh D. A.; Zerbetto F. Synthetic Molecular Motors and Mechanical Machines. Angew. Chem., Int. Ed. 2007, 46, 72–191. 10.1002/anie.200504313. - DOI - PubMed
    3. van Dongen S. F. M.; Cantekin S.; Elemans J. A. A. W.; Rowan A. E.; Nolte R. J. M. Functional interlocked systems. Chem. Soc. Rev. 2014, 43, 99–122. 10.1039/C3CS60178A. - DOI - PubMed
    4. Erbas-Cakmak S.; Leigh D. A.; McTernan C. T.; Nussbaumer A. L. Artificial Molecular Machines. Chem. Rev. 2015, 115, 10081–10206. 10.1021/acs.chemrev.5b00146. - DOI - PMC - PubMed
    5. Kassem S.; van Leeuwen T.; Lubbe A. S.; Wilson M. R.; Feringa B. L.; Leigh D. A. Artificial molecular motors. Chem. Soc. Rev. 2017, 46, 2592–2621. 10.1039/C7CS00245A. - DOI - PubMed
    1. Collier C. P.; Wong E. W.; Belohradský M.; Raymo F. M.; Stoddart J. F.; Kuekes P. J.; Williams R. S.; Heath J. R. Electronically Configurable Molecular-Based Logic Gates. Science 1999, 285, 391–394. 10.1126/science.285.5426.391. - DOI - PubMed
    2. Green J. E.; Wook Choi J.; Boukai A.; Bunimovich Y.; Johnston-Halperin E.; DeIonno E.; Luo Y.; Sheriff B. A.; Xu K.; Shik Shin Y.; Tseng H.-R.; Stoddart J. F.; Heath J. R. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 2007, 445, 414.10.1038/nature05462. - DOI - PubMed

LinkOut - more resources