Digital image analysis of multiplex fluorescence IHC in colorectal cancer recognizes the prognostic value of CDX2 and its negative correlation with SOX2

Lab Invest. 2020 Jan;100(1):120-134. doi: 10.1038/s41374-019-0336-4. Epub 2019 Oct 22.

Abstract

Flourescence-based multiplex immunohistochemistry (mIHC) combined with multispectral imaging and digital image analysis (DIA) is a quantitative high-resolution method for determination of protein expression in tissue. We applied this method for five biomarkers (CDX2, SOX2, SOX9, E-cadherin, and β-catenin) using tissue microarrays of a Norwegian unselected series of primary colorectal cancer. The data were compared with previously obtained chromogenic IHC data of the same tissue cores, visually assessed by the Allred method. We found comparable results between the methods, although confirmed that DIA offered improved resolution to differentiate cases with high and low protein expression. However, we experienced inherent challenges with digital image analysis of membrane staining, which was better assessed visually. DIA and mIHC enabled quantitative analysis of biomarker coexpression on the same tissue section at the single-cell level, revealing a strong negative correlation between the differentiation markers CDX2 and SOX2. Both methods confirmed known prognostic associations for CDX2, but DIA improved data visualization and detection of clinicopathological and biological associations. In summary, mIHC combined with DIA is an efficient and reliable method to evaluate protein expression in tissue, here shown to recapitulate and improve detection of known clinicopathological and survival associations for the emerging biomarker CDX2, and is therefore a candidate approach to standardize CDX2 detection in pathology laboratories.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers, Tumor / analysis*
  • Biomarkers, Tumor / metabolism
  • CDX2 Transcription Factor / metabolism
  • Colorectal Neoplasms / diagnosis
  • Colorectal Neoplasms / metabolism
  • Fluorescent Antibody Technique*
  • Humans
  • Image Interpretation, Computer-Assisted*
  • SOXB1 Transcription Factors / metabolism
  • Tissue Array Analysis

Substances

  • Biomarkers, Tumor
  • CDX2 Transcription Factor
  • CDX2 protein, human
  • SOX2 protein, human
  • SOXB1 Transcription Factors