The Synergistic Effect of Zinc Ferrite Nanoparticles Uniformly Deposited on Silver Nanowires for the Biofilm Inhibition of Candida albicans

Nanomaterials (Basel). 2019 Oct 10;9(10):1431. doi: 10.3390/nano9101431.

Abstract

Near-monodisperse zinc ferrite nanoparticles (ZnFe2O4 NPs) are synthesized by a co-precipitation method and deposited on the surface of silver nanowires (AgNWs), employing a stepwise solution method. The resulting hybrid nanostructures (ZnFe2O4@AgNWs) show a thin and uniform layer of ZnFe2O4 NPs at an optimum weight ratio of 1:6 between the two component nanostructures. The hybrid nanostructures retain the high crystal quality and phase purity of their constituents. It is demonstrated that the ZnFe2O4@AgNWs hybrid nanostructures are effective at inhibiting the biofilm formation of Candida albicans cells. The biofilm inhibition activity of the hybrid nanostructures is estimated to be more than 50% at a low concentration of 100 µg/mL from both crystal violet assay and XTT assay, which are more than 8-fold higher than those of pure AgNWs and ZnFe2O4 NPs. This greatly enhanced biofilm inhibition activity is attributed to the ZnFe2O4 NPs-carrying membrane penetration by AgNWs and the subsequent interaction between Candida cells and ZnFe2O4 NPs. These results indicate that the ZnFe2O4@AgNWs hybrid nanostructures have great potential as a new type of novel antibiofilm agent.

Keywords: Candida albicans; biofilm inhibition; crystal violet assay; hybrid nanostructures; zinc ferrite nanoparticles.