Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 29;51(1):60.
doi: 10.1186/s12711-019-0502-6.

Impact of merging commercial breeding lines on the genetic diversity of Landrace pigs

Affiliations

Impact of merging commercial breeding lines on the genetic diversity of Landrace pigs

Ina Hulsegge et al. Genet Sel Evol. .

Abstract

Background: The pig breeding industry has undergone a large number of mergers in the past decades. Various commercial lines were merged or discontinued, which is expected to reduce the genetic diversity of the pig species. The objective of the current study was to investigate the genetic diversity of different former Dutch Landrace breeding lines and quantify their relationship with the current Dutch Landrace breed that originated from these lines.

Results: Principal component analysis clearly divided the former Landrace lines into two main clusters, which are represented by Norwegian/Finnish Landrace lines and Dutch Landrace lines. Structure analysis revealed that each of the lines that are present in the Dutch Gene bank has a unique genetic identity. The current Dutch Landrace breed shows a high level of admixture and is closely related to the six former lines. The Dumeco N-line, which is conserved in the Dutch Gene bank, is poorly represented in the current Dutch Landrace. All seven lines (the six former and the current line) contribute almost equally to the genetic diversity of the Dutch Landrace breed. As expected, the current Dutch Landrace breed comprises only a small proportion of unique genetic diversity that was not present in the other lines. The genetic diversity level, as measured by Eding's core set method, was equal to 0.89 for the current Dutch Landrace breed, whereas total genetic diversity across the seven lines, measured by the same method, was equal to 0.99.

Conclusions: The current Dutch Landrace breed shows a high level of admixture and is closely related to the six former Dutch Landrace lines. Merging of commercial Landrace lines has reduced the genetic diversity of the Landrace population in the Netherlands, although a large proportion of the original variation is maintained. Thus, our recommendation is to conserve breeding lines in a gene bank before they are merged.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Timeline showing the consolidation of the Landrace breeds in the Netherlands since the 1960s (after [8]). CNF Cofok Norwegian and Finnish Landrace, DL Dumeco L-line, DN Dumeco N-line, FL Stamboek Finnish Landrace, FZ Fomeva Z1-line, SB Stamboek Dutch Landrace, TN Topigs Norsvin N-line
Fig. 2
Fig. 2
Population structure and relationships of Landrace breeding lines in the Netherlands. a Principal component (PC) analysis, PC 1 against PC 2. b Neighbor-joining tree of the relationships between the seven lines. c Proportion of ancestry for each individual assuming different numbers of ancestral populations (K = 2 to 7). Colors of each vertical line represent the estimated proportion of an animal’s genome that is assigned to a source population
Fig. 3
Fig. 3
Genome-wide distribution of log10 Bayes factor values in the pairwise comparison between the current TN and the six former lines. a CNF versus TN, b DL versus TN, c DN versus TN, d FL versus TN, e FZ versus TN and f SB versus TN. The threshold for significance of signatures of selection is denoted with a line (q-value ≤ 0.05)
Fig. 3
Fig. 3
Genome-wide distribution of log10 Bayes factor values in the pairwise comparison between the current TN and the six former lines. a CNF versus TN, b DL versus TN, c DN versus TN, d FL versus TN, e FZ versus TN and f SB versus TN. The threshold for significance of signatures of selection is denoted with a line (q-value ≤ 0.05)

Similar articles

Cited by

References

    1. FAO. Meat and meat products. 2016. http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Meat/.... Accessed 13 Dec 2018.
    1. de Man AP. Pig-breeding as a knowledge-intensive sector. In Knowledge management and innovation in networks. London: Edward Elgar Publishing Ltd; 2008. pp. 103–121.
    1. Muir WM, Wong GKS, Zhang Y, Wang J, Groenen MAM, Crooijmans RPMA, et al. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc Nat Acad Sci USA. 2008;105:17312–17317. doi: 10.1073/pnas.0806569105. - DOI - PMC - PubMed
    1. Herrero-Medrano JM, Megens HJ, Groenen MAM, Bosse M, Pérez-Enciso M, Crooijmans RPMA. Whole-genome sequence analysis reveals differences in population management and selection of European low-input pig breeds. BMC Genomics. 2014;15:601. doi: 10.1186/1471-2164-15-601. - DOI - PMC - PubMed
    1. FAO. The second report on the state of the world’s animal genetic resources for food and agriculture. Rome: FAO Commission on genetic resources for food and agriculture assessments. 2015. http://www.fao.org/3/a-i4787e/index.html. Accessed 13 Dec 2018.