The dissociation mechanism of processive cellulases

Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23061-23067. doi: 10.1073/pnas.1913398116. Epub 2019 Oct 30.

Abstract

Cellulase enzymes deconstruct recalcitrant cellulose into soluble sugars, making them a biocatalyst of biotechnological interest for use in the nascent lignocellulosic bioeconomy. Cellobiohydrolases (CBHs) are cellulases capable of liberating many sugar molecules in a processive manner without dissociating from the substrate. Within the complete processive cycle of CBHs, dissociation from the cellulose substrate is rate limiting, but the molecular mechanism of this step is unknown. Here, we present a direct comparison of potential molecular mechanisms for dissociation via Hamiltonian replica exchange molecular dynamics of the model fungal CBH, Trichoderma reesei Cel7A. Computational rate estimates indicate that stepwise cellulose dethreading from the binding tunnel is 4 orders of magnitude faster than a clamshell mechanism, in which the substrate-enclosing loops open and release the substrate without reversing. We also present the crystal structure of a disulfide variant that covalently links substrate-enclosing loops on either side of the substrate-binding tunnel, which constitutes a CBH that can only dissociate via stepwise dethreading. Biochemical measurements indicate that this variant has a dissociation rate constant essentially equivalent to the wild type, implying that dethreading is likely the predominant mechanism for dissociation.

Keywords: biofuels; cellulases; crystal structure; molecular mechanism; molecular simulation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Binding Sites
  • Catalytic Domain
  • Cellulases / chemistry*
  • Cellulases / metabolism
  • Cellulose / chemistry
  • Cellulose / metabolism
  • Fungal Proteins / chemistry*
  • Fungal Proteins / metabolism
  • Kinetics
  • Molecular Dynamics Simulation
  • Trichoderma / chemistry
  • Trichoderma / enzymology*

Substances

  • Fungal Proteins
  • Cellulose
  • Cellulases