Microcolonies: a novel morphological form of pathogenic Mycoplasma spp

J Med Microbiol. 2019 Dec;68(12):1747-1758. doi: 10.1099/jmm.0.001081. Epub 2019 Oct 31.

Abstract

Introduction. The Mollicutes class unites cell wall lacking bacteria many of which are membrane parasites and opportunistic bacteria.Aim. This study describes a novel morphological form found in the five species belonging to the bacterial class Mollicutes, and referred to as microcolonies (MCs).Methodology. MCs were obtained as described below and characterized with bacteriological and immunological methods, and microscopy.Results. In contrast to typical colonies (TCs), MCs are characterized by tiny propeller-shaped colonies formed by rod-like cells tightly packed in parallel rows. These colonies were observed within routinely cultivated cultures of type strains 7-12 days post-plating. Rod-like cells were visualized using a scanning electron microscope within TCs with a 'fried-egg-like' appearance. MCs were not observed to revert to TCs. MCs were resistant to antibiotics and other treatments effective against TCs. Pure MC cultures were generated in vitro by treatment of Mycoplasma cultures with hyperimmune serum, antibiotics or argon non-thermal plasma. MCs of Mycoplasma hominis strain H-34 were characterized in detail to confirm that they belonged to that species. MCs tested positive via PCR with M. hominis-specific primers, direct fluorescence and epifluorescence tests, and Western blotting with the camel-derived nanobody aMh-FcG2a, which is specific to the MH3620 transporter protein. Meanwhile, MCs behaved differently in standard bacteriological tests. Pure MC cultures were also isolated directly from clinical samples of the serum, synovial liquid and urine of patients within flammatory urogenital tract diseases, asthma or arthritis. In total, 79 independent MC cultures were isolated from clinical samples including M. hominis (n=70), Mycoplasma pneumoniae (n=2), Mycoplasma fermentans (n=2) and Mycoplasma spp. (n=5).Conclusion. MCs play an unknown role in infection pathology and display prominent antibiotic resistance, making them a challenge for the future studies on Mollicutes.

Keywords: Mycoplasma; antibiotic resistance; morphology; small colony variants.

MeSH terms

  • Drug Resistance, Bacterial
  • Humans
  • Mycoplasma / cytology*
  • Tenericutes / cytology
  • Tenericutes / drug effects
  • Tenericutes / growth & development
  • Tenericutes / isolation & purification*