Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods

Environ Pollut. 2020 Jan:256:113360. doi: 10.1016/j.envpol.2019.113360. Epub 2019 Oct 11.

Abstract

Oil pollution harms terrestrial ecosystems. There is an urgent requirement to improve on existing methods for detecting, mapping and establishing the precise extent of oil-impacted and oil-free vegetation. This is needed to quantify existing spill extents, formulate effective remediation strategies and to enable effective pipeline monitoring strategies to identify leakages at an early stage. An effective oil spill detection algorithm based on optical image spectral responses can benefit immensely from the inclusion of multi-frequency Synthetic Aperture Radar (SAR) data, especially when the effect of multi-collinearity is sufficiently reduced. This study compared the Fuzzy Forest (FF) and Random Forest (RF) methods in detecting and mapping oil-impacted vegetation from a post spill multispectral optical sentinel 2 image and multifrequency C and X Band Sentinel - 1, COSMO Skymed and TanDEM-X SAR images. FF and RF classifiers were employed to discriminate oil-spill impacted and oil-free vegetation in a study area in Nigeria. Fuzzy Forest uses specific functions for the selection and use of uncorrelated variables in the classification process to yield an improved result. This method proved an efficient variable selection technique addressing the effects of high dimensionality and multi-collinearity, as the optimization and use of different SAR and optical image variables generated more accurate results than the RF algorithm in densely vegetated areas. An Overall Accuracy (OA) of 75% was obtained for the dense (Tree Cover Area) vegetation, while cropland and grassland areas had 59.4% and 65% OA respectively. However, RF performed better in Cropland areas with OA = 75% when SAR-optical image variables were used for classification, while both methods performed equally well in Grassland areas with OA = 65%. Similarly, significant backscatter differences (P < 0.005) were observed in the C-Band backscatter sample mean of polluted and oil-free TCA, while strong linear associations existed between LAI and backscatter in grassland and TCA. This study demonstrates that SAR based monitoring of petroleum hydrocarbon impacts on vegetation is feasible and has high potential for establishing oil-impacted areas and oil pipeline monitoring.

Keywords: Fuzzy forest; Mineral oil pollution; Multi-frequency SAR; Random forest; Variable importance; Vegetation indices.

MeSH terms

  • Algorithms
  • Crops, Agricultural / growth & development
  • Ecosystem
  • Environmental Monitoring / methods*
  • Hydrocarbons / analysis*
  • Hydrocarbons / toxicity
  • Nigeria
  • Petroleum / analysis*
  • Petroleum / toxicity
  • Petroleum Pollution / adverse effects
  • Petroleum Pollution / analysis*
  • Plant Development / drug effects*
  • Poaceae / growth & development
  • Radar*
  • Trees / growth & development

Substances

  • Hydrocarbons
  • Petroleum