Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis
- PMID: 31672968
- PMCID: PMC6823436
- DOI: 10.1038/s41467-019-12619-2
Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis
Abstract
Tight control of centriole duplication is critical for normal chromosome segregation and the maintenance of genomic stability. Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis. How Plk4 dynamically promotes its symmetry-breaking relocalization and achieves its procentriole-assembly state remains unknown. Here we show that Plk4 is a unique kinase that utilizes its autophosphorylated noncatalytic cryptic polo-box (CPB) to phase separate and generate a nanoscale spherical condensate. Analyses of the crystal structure of a phospho-mimicking, condensation-proficient CPB mutant reveal that a disordered loop at the CPB PB2-tip region is critically required for Plk4 to generate condensates and induce procentriole assembly. CPB phosphorylation also promotes Plk4's dissociation from the Cep152 tether while binding to downstream STIL, thus allowing Plk4 condensate to serve as an assembling body for centriole biogenesis. This study uncovers the mechanism underlying Plk4 activation and may offer strategies for anti-Plk4 intervention against genomic instability and cancer.
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Autophosphorylation-induced self-assembly and STIL-dependent reinforcement underlie Plk4's ring-to-dot localization conversion around a human centriole.Cell Cycle. 2020 Dec;19(24):3419-3436. doi: 10.1080/15384101.2020.1843772. Epub 2020 Dec 15. Cell Cycle. 2020. PMID: 33323015 Free PMC article.
-
Self-organization of Plk4 regulates symmetry breaking in centriole duplication.Nat Commun. 2019 Apr 18;10(1):1810. doi: 10.1038/s41467-019-09847-x. Nat Commun. 2019. PMID: 31000710 Free PMC article.
-
PLK4 self-phosphorylation drives the selection of a single site for procentriole assembly.J Cell Biol. 2023 Dec 4;222(12):e202301069. doi: 10.1083/jcb.202301069. Epub 2023 Sep 29. J Cell Biol. 2023. PMID: 37773039 Free PMC article.
-
The PLK4-STIL-SAS-6 module at the core of centriole duplication.Biochem Soc Trans. 2016 Oct 15;44(5):1253-1263. doi: 10.1042/BST20160116. Biochem Soc Trans. 2016. PMID: 27911707 Free PMC article. Review.
-
Centriole assembly at a glance.J Cell Sci. 2019 Feb 20;132(4):jcs228833. doi: 10.1242/jcs.228833. J Cell Sci. 2019. PMID: 30787112 Review.
Cited by
-
TRIM37 controls cancer-specific vulnerability to PLK4 inhibition.Nature. 2020 Sep;585(7825):440-446. doi: 10.1038/s41586-020-2710-1. Epub 2020 Sep 9. Nature. 2020. PMID: 32908304 Free PMC article.
-
Phase Separation in Cell Division.Mol Cell. 2020 Oct 1;80(1):9-20. doi: 10.1016/j.molcel.2020.08.007. Epub 2020 Aug 28. Mol Cell. 2020. PMID: 32860741 Free PMC article. Review.
-
A simple Turing reaction-diffusion model explains how PLK4 breaks symmetry during centriole duplication and assembly.PLoS Biol. 2023 Nov 20;21(11):e3002391. doi: 10.1371/journal.pbio.3002391. eCollection 2023 Nov. PLoS Biol. 2023. PMID: 37983248 Free PMC article.
-
Centrosomal organization of Cep152 provides flexibility in Plk4 and procentriole positioning.J Cell Biol. 2023 Dec 4;222(12):e202301092. doi: 10.1083/jcb.202301092. Epub 2023 Sep 14. J Cell Biol. 2023. PMID: 37707473 Free PMC article.
-
Daughter centrioles assemble preferentially towards the nuclear envelope in Drosophila syncytial embryos.Open Biol. 2022 Jan;12(1):210343. doi: 10.1098/rsob.210343. Epub 2022 Jan 19. Open Biol. 2022. PMID: 35042404 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
