Physiological and Behavioral Indicators to Measure Crustacean Welfare

Animals (Basel). 2019 Nov 3;9(11):914. doi: 10.3390/ani9110914.


This project determined how neural circuits are affected during warming by examining sensory neurons, the neuromuscular junction, and the cardiac function and behavior of the commercially important crustacean species, the red swamp crayfish (Procambarus clarkii). Rapid inactivation of neural function in crustaceans prior to slaughter is important to limit exposure to noxious stimuli, thus improving animal welfare. This study demonstrated that as a crayfish is warmed at 1 °C/min, the heart beat stops at 44 °C. When temperature is rapidly increased, at 44 °C synaptic transmission at the neuromuscular junction ceases and primary sensory neurons stop functioning. Even though animals do not respond to stimuli after being warmed to 44 °C, if sensory neurons are returned to 20 °C saline after two minutes, they may regain function. Conversely, the neuromuscular junction does not regain function after two minutes in 44 °C saline. Examining behavior and heart rate while warming at 1 °C/min, 12 °C/min, or 46 °C/min to 80 °C indicated that at approximately 40 °C the heart rate is altered. Within 10 s at 80 °C, the heart stops with the highest heating rate. Directly placing crayfish in boiling water stopped the heart quickest, within 10 s, which likely represents denaturing of the tissue by heat. Using an impedance measure to detect a heartbeat may also be influenced by movements in the denaturing process of the tissue. A rapid increase in the temperature of the crayfish above 44 °C is key to limit its exposure to noxious stimuli.

Keywords: crayfish; heating; slaughter.