Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes

BMC Evol Biol. 2019 Nov 6;19(1):205. doi: 10.1186/s12862-019-1524-y.

Abstract

Background: Antarctic fishes of the Notothenioidei suborder constitutively upregulate multiple inducible chaperones, a highly derived adaptation that preserves proteostasis in extreme cold, and represent a system for studying the evolution of gene frontloading. We screened for Hsf1-binding sites, as Hsf1 is a master transcription factor of the heat shock response, and highly-conserved non-coding elements within proximal promoters of chaperone genes across 10 Antarctic notothens, 2 subpolar notothens, and 17 perciform fishes. We employed phylogenetic models of molecular evolution to determine whether (i) changes in motifs associated with Hsf1-binding and/or (ii) relaxed purifying selection or exaptation at ancestral cis-regulatory elements coincided with the evolution of chaperone frontloading in Antarctic notothens.

Results: Antarctic notothens exhibited significantly fewer Hsf1-binding sites per bp at chaperone promoters than subpolar notothens and Serranoidei, the most closely-related suborder to Notothenioidei included in this study. 90% of chaperone promoters exhibited accelerated substitution rates among Antarctic notothens relative to other perciformes. The proportion of bases undergoing accelerated evolution (i) was significantly greater in Antarctic notothens than in subpolar notothens and Perciformes in 70% of chaperone genes and (ii) increased among bases that were more conserved among perciformes. Lastly, we detected evidence of relaxed purifying selection and exaptation acting on ancestrally conserved cis-regulatory elements in the Antarctic notothen lineage and its major branches.

Conclusion: A large degree of turnover has occurred in Notothenioidei at chaperone promoter regions that are conserved among perciform fishes following adaptation to the cooling of the Southern Ocean. Additionally, derived reductions in Hsf1-binding site frequency suggest cis-regulatory modifications to the classical heat shock response. Of note, turnover events within chaperone promoters were less frequent in the ancestral node of Antarctic notothens relative to younger Antarctic lineages. This suggests that cis-regulatory divergence at chaperone promoters may be greater between Antarctic notothen lineages than between subpolar and Antarctic clades. These findings demonstrate that strong selective forces have acted upon cis-regulatory elements of chaperone genes among Antarctic notothens.

Keywords: Comparative genomics; Environmental adaptation; Gene regulation; Heat shock proteins; Notothen; Promoters; cis-regulation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Antarctic Regions
  • Evolution, Molecular*
  • Fish Proteins / genetics*
  • Gene Expression Regulation
  • Heat-Shock Response
  • Molecular Chaperones / genetics*
  • Perciformes / genetics*
  • Perciformes / physiology*
  • Phylogeny
  • Promoter Regions, Genetic*

Substances

  • Fish Proteins
  • Molecular Chaperones