3D brain angiogenesis model to reconstitute functional human blood-brain barrier in vitro
- PMID: 31709508
- DOI: 10.1002/bit.27224
3D brain angiogenesis model to reconstitute functional human blood-brain barrier in vitro
Abstract
The human central nervous system (CNS) vasculature expresses a distinctive barrier phenotype, the blood-brain barrier (BBB). As the BBB contributes to low efficiency in CNS pharmacotherapy by restricting drug transport, the development of an in vitro human BBB model has been in demand. Here, we present a microfluidic model of CNS angiogenesis having three-dimensional (3D) lumenized vasculature in concert with perivascular cells. We confirmed the necessity of the angiogenic tri-culture system (brain endothelium in direct interaction with pericytes and astrocytes) to attain essential phenotypes of BBB vasculature, such as minimized vessel diameter and maximized junction expression. In addition, lower vascular permeability is achieved in the tri-culture condition compared to the monoculture condition. Notably, we focussed on reconstituting the functional efflux transporter system, including p-glycoprotein (p-gp), which is highly responsible for restrictive drug transport. By conducting the calcein-AM efflux assay on our 3D perfusable vasculature after treatment of efflux transporter inhibitors, we confirmed the higher efflux property and prominent effect of inhibitors in the tri-culture model. Taken together, we designed a 3D human BBB model with functional barrier properties based on a developmentally inspired CNS angiogenesis protocol. We expect the model to contribute to a deeper understanding of pathological CNS angiogenesis and the development of effective CNS medications.
Keywords: 3D vascular model; CNS angiogenesis; blood-brain barrier; efflux transporter; organ-on-chip.
© 2019 Wiley Periodicals, Inc.
Similar articles
-
BBB-on-a-Chip: Modeling Functional Human Blood-Brain Barrier by Mimicking 3D Brain Angiogenesis Using Microfluidic Chip.Methods Mol Biol. 2022;2492:251-263. doi: 10.1007/978-1-0716-2289-6_14. Methods Mol Biol. 2022. PMID: 35733049
-
A pump-free tricellular blood-brain barrier on-a-chip model to understand barrier property and evaluate drug response.Biotechnol Bioeng. 2020 Apr;117(4):1127-1136. doi: 10.1002/bit.27260. Epub 2020 Jan 18. Biotechnol Bioeng. 2020. PMID: 31885078
-
3D Self-Organized Human Blood-Brain Barrier in a Microfluidic Chip.Methods Mol Biol. 2021;2258:205-219. doi: 10.1007/978-1-0716-1174-6_14. Methods Mol Biol. 2021. PMID: 33340363
-
Engineered human blood-brain barrier microfluidic model for vascular permeability analyses.Nat Protoc. 2022 Jan;17(1):95-128. doi: 10.1038/s41596-021-00635-w. Epub 2022 Jan 7. Nat Protoc. 2022. PMID: 34997242 Review.
-
Development and Cell Biology of the Blood-Brain Barrier.Annu Rev Cell Dev Biol. 2019 Oct 6;35:591-613. doi: 10.1146/annurev-cellbio-100617-062608. Epub 2019 Jul 12. Annu Rev Cell Dev Biol. 2019. PMID: 31299172 Free PMC article. Review.
Cited by
-
Vascularized organoid-on-a-chip: design, imaging, and analysis.Angiogenesis. 2024 Feb 26. doi: 10.1007/s10456-024-09905-z. Online ahead of print. Angiogenesis. 2024. PMID: 38409567 Review.
-
In Vitro Growth of Human Follicles: Current and Future Perspectives.Int J Mol Sci. 2024 Jan 26;25(3):1510. doi: 10.3390/ijms25031510. Int J Mol Sci. 2024. PMID: 38338788 Free PMC article. Review.
-
Angiogenesis-on-a-chip coupled with single-cell RNA sequencing reveals spatially differential activations of autophagy along angiogenic sprouts.Nat Commun. 2024 Jan 3;15(1):230. doi: 10.1038/s41467-023-44427-0. Nat Commun. 2024. PMID: 38172108 Free PMC article.
-
Micro/nanosystems for controllable drug delivery to the brain.Innovation (Camb). 2023 Nov 27;5(1):100548. doi: 10.1016/j.xinn.2023.100548. eCollection 2024 Jan 8. Innovation (Camb). 2023. PMID: 38161522 Free PMC article. Review.
-
Sensorization of microfluidic brain-on-a-chip devices: Towards a new generation of integrated drug screening systems.Trends Analyt Chem. 2023 Nov;168:117319. doi: 10.1016/j.trac.2023.117319. Trends Analyt Chem. 2023. PMID: 37915756 Free PMC article.
References
REFERENCES
-
- Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiology of Disease, 37(1), 13-25. https://doi.org/10.1016/j.nbd.2009.07.030
-
- Abbott, N. J., Ronnback, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 7(1), 41-53. https://doi.org/10.1038/nrn1824
-
- Achyuta, A. K., Conway, A. J., Crouse, R. B., Bannister, E. C., Lee, R. N., Katnik, C. P., … Sundaram, S. S. (2013). A modular approach to create a neurovascular unit-on-a-chip. Lab on a Chip, 13(4), 542-553. https://doi.org/10.1039/c2lc41033h
-
- Adriani, G., Ma, D., Pavesi, A., Kamm, R. D., & Goh, E. L. (2017). A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. Lab on a Chip, 17(3), 448-459. https://doi.org/10.1039/c6lc00638h
-
- Arai, K., Jin, G., Navaratna, D., & Lo, E. H. (2009). Brain angiogenesis in developmental and pathological processes: Neurovascular injury and angiogenic recovery after stroke. FEBS Journal, 276(17), 4644-4652. https://doi.org/10.1111/j.1742-4658.2009.07176.x
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
