Chemical Vapor Deposition Growth of Silicon Nanowires with Diameter Smaller Than 5 nm
- PMID: 31720500
- PMCID: PMC6843710
- DOI: 10.1021/acsomega.9b01488
Chemical Vapor Deposition Growth of Silicon Nanowires with Diameter Smaller Than 5 nm
Abstract
Quantum confinement effects in silicon nanowires (SiNWs) are expected when their diameter is less than the size of the free exciton (with a Bohr radius ∼5 nm) in bulk silicon. However, their synthesis represents a considerable technological challenge. The vapor-liquid-solid (VLS) mechanism, mediated by metallic nanoclusters brought to the eutectic liquid state, is most widely used for its simplicity and control on the SiNWs size, shape, orientation, density, and surface smoothness. VLS growth is often performed within high-vacuum physical vapor deposition systems, where the eutectic composition and the pressure conditions define the minimum diameter of the final nanowire usually around 100 nm. In this article, we present and discuss the SiNWs' growth by the VLS method in a plasma-based chemical vapor deposition system, working in the mTorr pressure range. The purpose is to demonstrate that it is possible to obtain nanostructures with sizes well beyond the observed limit by modulating the deposition parameters, like chamber pressure and plasma power, to find the proper thermodynamic conditions for nucleation. The formation of SiNWs with sub-5 nm diameter is demonstrated.
Copyright © 2019 American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
Similar articles
-
Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties.Sci Rep. 2016 Nov 22;5:37598. doi: 10.1038/srep37598. Sci Rep. 2016. PMID: 27874057 Free PMC article.
-
Tapering-free monocrystalline Ge nanowires synthesized via plasma-assisted VLS using In and Sn catalysts.Nanotechnology. 2022 Jul 14;33(40). doi: 10.1088/1361-6528/ac57d4. Nanotechnology. 2022. PMID: 35196259
-
Origin of diameter-dependent growth direction of silicon nanowires.Nano Lett. 2006 Jul;6(7):1552-5. doi: 10.1021/nl060096g. Nano Lett. 2006. PMID: 16834448
-
Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts.Nanotechnology. 2009 Jun 3;20(22):225604. doi: 10.1088/0957-4484/20/22/225604. Epub 2009 May 13. Nanotechnology. 2009. PMID: 19436096
-
Control of surface migration of gold particles on Si nanowires.Nano Lett. 2008 Jan;8(1):362-8. doi: 10.1021/nl072366g. Epub 2007 Dec 21. Nano Lett. 2008. PMID: 18095731
Cited by
-
Evolution of Cu-In Catalyst Nanoparticles under Hydrogen Plasma Treatment and Silicon Nanowire Growth Conditions.Nanomaterials (Basel). 2023 Jul 12;13(14):2061. doi: 10.3390/nano13142061. Nanomaterials (Basel). 2023. PMID: 37513072 Free PMC article.
-
Future Prospects of Luminescent Silicon Nanowires Biosensors.Biosensors (Basel). 2022 Nov 21;12(11):1052. doi: 10.3390/bios12111052. Biosensors (Basel). 2022. PMID: 36421170 Free PMC article.
-
Editorial: Silicon-Based Nanomaterials: Synthesis, Optimization and Applications.Front Chem. 2022 Jul 6;10:961641. doi: 10.3389/fchem.2022.961641. eCollection 2022. Front Chem. 2022. PMID: 35873061 Free PMC article. No abstract available.
-
Early Stages of Aluminum-Doped Zinc Oxide Growth on Silicon Nanowires.Nanomaterials (Basel). 2022 Feb 25;12(5):772. doi: 10.3390/nano12050772. Nanomaterials (Basel). 2022. PMID: 35269260 Free PMC article.
-
High Density of Quantum-Sized Silicon Nanowires with Different Polytypes Grown with Bimetallic Catalysts.ACS Omega. 2021 Sep 29;6(40):26381-26390. doi: 10.1021/acsomega.1c03630. eCollection 2021 Oct 12. ACS Omega. 2021. PMID: 34660996 Free PMC article.
References
-
- Zhang A.; Zheng G.; Lieber C.. Nanowires: Building Blocks for Nanoscience and Nanotechnology; Springer, 2016; ISBN 978-3-319-41979-4.
-
- Reed B. W.; Chen J. M.; MacDonald N. C.; Silcox J.; Bertsch G. F. Fabrication and STEM/EELS measurements of nanometer-scale silicon tips and filaments. Phys. Rev. B 1999, 60, 5641–5652. 10.1103/PhysRevB.60.5641. - DOI
-
- Kikkawa J.; Takeda S.; Sato Y.; Terauchi M. Enhanced direct interband transitions in silicon nanowires studied by electron energy-loss spectroscopy. Phys. Rev. B 2007, 75, 24531710.1103/PhysRevB.75.245317. - DOI
LinkOut - more resources
Full Text Sources