Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr;43(4):1172-1183.
doi: 10.1109/TPAMI.2019.2952353. Epub 2021 Mar 4.

Assessing Transferability From Simulation to Reality for Reinforcement Learning

Assessing Transferability From Simulation to Reality for Reinforcement Learning

Fabio Muratore et al. IEEE Trans Pattern Anal Mach Intell. 2021 Apr.

Abstract

Learning robot control policies from physics simulations is of great interest to the robotics community as it may render the learning process faster, cheaper, and safer by alleviating the need for expensive real-world experiments. However, the direct transfer of learned behavior from simulation to reality is a major challenge. Optimizing a policy on a slightly faulty simulator can easily lead to the maximization of the 'Simulation Optimization Bias' (SOB). In this case, the optimizer exploits modeling errors of the simulator such that the resulting behavior can potentially damage the robot. We tackle this challenge by applying domain randomization, i.e., randomizing the parameters of the physics simulations during learning. We propose an algorithm called Simulation-based Policy Optimization with Transferability Assessment (SPOTA) which uses an estimator of the SOB to formulate a stopping criterion for training. The introduced estimator quantifies the over-fitting to the set of domains experienced while training. Our experimental results on two different second order nonlinear systems show that the new simulation-based policy search algorithm is able to learn a control policy exclusively from a randomized simulator, which can be applied directly to real systems without any additional training.

PubMed Disclaimer

Similar articles

Cited by

  • Robot Learning From Randomized Simulations: A Review.
    Muratore F, Ramos F, Turk G, Yu W, Gienger M, Peters J. Muratore F, et al. Front Robot AI. 2022 Apr 11;9:799893. doi: 10.3389/frobt.2022.799893. eCollection 2022. Front Robot AI. 2022. PMID: 35494543 Free PMC article. Review.

LinkOut - more resources