Bovine pericardial extracellular matrix niche modulates human aortic endothelial cell phenotype and function

Sci Rep. 2019 Nov 13;9(1):16688. doi: 10.1038/s41598-019-53230-1.

Abstract

Xenogeneic biomaterials contain biologically relevant extracellular matrix (ECM) composition and organization, making them potentially ideal surgical grafts and tissue engineering scaffolds. Defining the effect of ECM niche (e.g., basement membrane vs. non-basement membrane) on repopulating cell phenotype and function has important implications for use of xenogeneic biomaterials, particularly in vascular applications. We aim to understand how serous (i.e., basement membrane) versus fibrous (i.e., non-basement membrane) ECM niche of antigen-removed bovine pericardium (AR-BP) scaffolds influence human aortic endothelial cell (hAEC) adhesion, growth, phenotype, inflammatory response and laminin production. At low and moderate seeding densities hAEC proliferation was significantly increased on the serous side. Similarly, ECM niche modulated cellular morphology, with serous side seeding resulting in a more rounded aspect ratio and intact endothelial layer formation. At moderate seeding densities, hAEC production of human laminin was enhanced following serous seeding. Finally, inflammatory marker and pro-inflammatory cytokine expression decreased following long-term cell growth regardless of seeding side. This work demonstrates that at low and moderate seeding densities AR-BP sidedness significantly impacts endothelial cell growth, morphology, human laminin production, and inflammatory state. These findings suggest that ECM niche has a role in modulating response of repopulating recipient cells toward AR-BP scaffolds for vascular applications.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta / cytology*
  • Aorta / metabolism
  • Betaine / analogs & derivatives
  • Betaine / isolation & purification
  • Cattle
  • Cell Proliferation
  • Cells, Cultured
  • Endothelial Cells / cytology*
  • Endothelial Cells / metabolism*
  • Extracellular Matrix / chemistry*
  • Humans
  • Pericardium / chemistry*
  • Phenotype
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry*

Substances

  • amidosulfobetaine-14
  • Betaine