Adsorption of indium by waste biomass of brown alga Ascophyllum nodosum

Sci Rep. 2019 Nov 14;9(1):16763. doi: 10.1038/s41598-019-53172-8.

Abstract

The biosorption capacities of dried meal and a waste product from the processing for biostimulant extract of Ascophyllum nodosum were evaluated as candidates for low-cost, effective biomaterials for the recovery of indium(III). The use of indium has significantly grown in the last decade, because of its utilization in hi-tech. Two formats were evaluated as biosorbents: waste-biomass, a residue derived from the alkaline extraction of a commercial, biostimulant product, and natural-biomass which was harvested, dried and milled as a commercial, "kelp meal" product. Two systems have been evaluated: ideal system with indium only, and double metal-system with indium and iron, where two different levels of iron were investigated. For both systems, the indium biosorption by the brown algal biomass was found to be pH-dependent, with an optimum at pH3. In the ideal system, indium adsorption was higher (maximum adsorptions of 48 mg/g for the processed, waste biomass and 63 mg/g for the natural biomass), than in the double metal-system where the maximum adsorption was with iron at 0.07 g/L. Good values of indium adsorption were demonstrated in both the ideal and double systems: there was competition between the iron and indium ions for the binding sites available in the A. nodosum-derived materials. Data suggested that the processed, waste biomass of the algae, could be a good biosorbent for its indium absorption properties. This had the double advantages of both recovery of indium (high economic importance), and also definition of a virtuous circular economic innovative strategy, whereby a waste becomes a valuable resource.

MeSH terms

  • Adsorption
  • Ascophyllum / growth & development*
  • Ascophyllum / metabolism
  • Biomass
  • Electronic Waste / analysis*
  • Hydrogen-Ion Concentration
  • Indium / isolation & purification*
  • Iron / isolation & purification

Substances

  • Indium
  • Iron