Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer
- PMID: 31729063
- DOI: 10.1111/nph.16322
Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer
Abstract
Forest trees are able to thrive in nutrient-poor soils in part because they obtain growth-limiting nutrients, especially nitrogen (N), through mutualistic symbiosis with ectomycorrhizal (ECM) fungi. Addition of inorganic N into these soils is known to disrupt this mutualism and reduce the diversity of ECM fungi. Despite its ecological impact, the mechanisms governing the observed effects of elevated inorganic N on mycorrhizal communities remain unknown. We address this by using a compartmentalized in vitro system to independently alter nutrients to each symbiont. Using stable isotopes, we traced the nutrient flux under different nutrient regimes between Eucalyptus grandis and its ectomycorrhizal symbiont, Pisolithus albus. We demonstrate that giving E. grandis independent access to N causes a significant reduction in root colonization by P. albus. Transcriptional analysis suggests that the observed reduction in colonization may be caused, in part, by altered transcription of microbe perception genes and defence genes. We show that delivery of N to host leaves is not increased by host nutrient deficiency but by fungal nutrient availability instead. Overall, this advances our understanding of the effects of N fertilization on ECM fungi and the factors governing nutrient transfer in the E. grandis-P. microcarpus interaction.
Keywords: ectomycorrhizal (ECM) fungi; nitrogen deposition; nutrient trading; stable isotope tracing; transcriptomic analysis.
© 2019 The Authors New Phytologist © 2019 New Phytologist Trust.
Similar articles
-
Abscisic acid supports colonization of Eucalyptus grandis roots by the mutualistic ectomycorrhizal fungus Pisolithus microcarpus.New Phytol. 2022 Jan;233(2):966-982. doi: 10.1111/nph.17825. Epub 2021 Nov 16. New Phytol. 2022. PMID: 34699614
-
Nitrogen fertilization differentially affects the symbiotic capacity of two co-occurring ectomycorrhizal species.Environ Microbiol. 2022 Jan;24(1):309-323. doi: 10.1111/1462-2920.15879. Epub 2022 Jan 12. Environ Microbiol. 2022. PMID: 35023254
-
Mycorrhizal effector PaMiSSP10b alters polyamine biosynthesis in Eucalyptus root cells and promotes root colonization.New Phytol. 2020 Oct;228(2):712-727. doi: 10.1111/nph.16759. New Phytol. 2020. PMID: 32562507
-
[Advances in mechanisms of nutrient exchange between mycorrhizal fungi and host plants].Ying Yong Sheng Tai Xue Bao. 2019 Oct;30(10):3596-3604. doi: 10.13287/j.1001-9332.201910.034. Ying Yong Sheng Tai Xue Bao. 2019. PMID: 31621248 Review. Chinese.
-
Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review.Plant Biol (Stuttg). 2010 Mar;12(2):292-301. doi: 10.1111/j.1438-8677.2009.00312.x. Plant Biol (Stuttg). 2010. PMID: 20398236 Review.
Cited by
-
Sesquiterpenes of the ectomycorrhizal fungus Pisolithus microcarpus alter root growth and promote host colonization.Mycorrhiza. 2024 Mar 5. doi: 10.1007/s00572-024-01137-9. Online ahead of print. Mycorrhiza. 2024. PMID: 38441669
-
Leveraging genomics to understand the broader role of fungal small secreted proteins in niche colonization and nutrition.ISME Commun. 2022 Jun 28;2(1):49. doi: 10.1038/s43705-022-00139-y. ISME Commun. 2022. PMID: 37938664 Free PMC article. Review.
-
Acquisition of host-derived carbon in biomass of the ectomycorrhizal fungus Pisolithus microcarpus is correlated to fungal carbon demand and plant defences.FEMS Microbiol Ecol. 2023 Apr 7;99(5):fiad037. doi: 10.1093/femsec/fiad037. FEMS Microbiol Ecol. 2023. PMID: 37002370 Free PMC article.
-
Speciation Underpinned by Unexpected Molecular Diversity in the Mycorrhizal Fungal Genus Pisolithus.Mol Biol Evol. 2023 Mar 4;40(3):msad045. doi: 10.1093/molbev/msad045. Mol Biol Evol. 2023. PMID: 36811946 Free PMC article.
-
The Relationship between Ectomycorrhizal Fungi, Nitrogen Deposition, and Pinus massoniana Seedling Nitrogen Transporter Gene Expression and Nitrogen Uptake Kinetics.J Fungi (Basel). 2022 Dec 31;9(1):65. doi: 10.3390/jof9010065. J Fungi (Basel). 2022. PMID: 36675886 Free PMC article.
References
-
- Albarracín MV, Six J, Houlton BZ, Bledsoe CS. 2013. A N fertilization field study of C-13 and N-15 transfers in ectomycorrhizas of Pinus sabiniana. Oecologia 173: 1439-1450.
-
- Averill C, Dietze MC, Bhatnagar JM. 2018. Continental-scale N pollution is shifting forest mycorrhizal associations and soil C stocks. Global Change Biology 24: 4544-4553.
-
- Balzergue C, Puech-Pagès V, Bécard G, Rochange SF. 2011. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany 62: 1049-1060.
-
- Bidartondo MI, Ek H, Wallander H, Söderström B. 2001. Do nutrient additions alter C sink strength of ectomycorrhizal fungi? New Phytologist 151: 543-550.
-
- Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E et al. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal 64: 1002-1017.
Publication types
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
