Genetic Identification of Vagal Sensory Neurons That Control Feeding
- PMID: 31730854
- PMCID: PMC6916730
- DOI: 10.1016/j.cell.2019.10.031
Genetic Identification of Vagal Sensory Neurons That Control Feeding
Abstract
Energy homeostasis requires precise measurement of the quantity and quality of ingested food. The vagus nerve innervates the gut and can detect diverse interoceptive cues, but the identity of the key sensory neurons and corresponding signals that regulate food intake remains unknown. Here, we use an approach for target-specific, single-cell RNA sequencing to generate a map of the vagal cell types that innervate the gastrointestinal tract. We show that unique molecular markers identify vagal neurons with distinct innervation patterns, sensory endings, and function. Surprisingly, we find that food intake is most sensitive to stimulation of mechanoreceptors in the intestine, whereas nutrient-activated mucosal afferents have no effect. Peripheral manipulations combined with central recordings reveal that intestinal mechanoreceptors, but not other cell types, potently and durably inhibit hunger-promoting AgRP neurons in the hypothalamus. These findings identify a key role for intestinal mechanoreceptors in the regulation of feeding.
Keywords: AgRP Neurons; RNA sequencing; chemogenetics; fiber photometry; hypothalamus; optogenetics; satiation; stretch; vagal afferents; vagus nerve.
Copyright © 2019 Elsevier Inc. All rights reserved.
Conflict of interest statement
DECLARATION OF INTERESTS
The authors declare no competing interests.
Figures
Comment in
-
A good stretch regulates satiety.Nat Rev Neurosci. 2020 Jan;21(1):1. doi: 10.1038/s41583-019-0252-z. Nat Rev Neurosci. 2020. PMID: 31796912 No abstract available.
-
Mechanosensing of food in the gut.Nat Rev Gastroenterol Hepatol. 2020 Feb;17(2):67. doi: 10.1038/s41575-019-0251-6. Nat Rev Gastroenterol Hepatol. 2020. PMID: 31822822 No abstract available.
Similar articles
-
Prox2 and Runx3 vagal sensory neurons regulate esophageal motility.Neuron. 2023 Jul 19;111(14):2184-2200.e7. doi: 10.1016/j.neuron.2023.04.025. Epub 2023 May 15. Neuron. 2023. PMID: 37192624
-
Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism.Cell Metab. 2021 Jul 6;33(7):1466-1482.e7. doi: 10.1016/j.cmet.2021.05.002. Epub 2021 May 26. Cell Metab. 2021. PMID: 34043943 Free PMC article.
-
A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.Auton Neurosci. 2006 Jun 30;126-127:9-29. doi: 10.1016/j.autneu.2006.03.005. Epub 2006 May 4. Auton Neurosci. 2006. PMID: 16677865 Review.
-
Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.Am J Physiol Heart Circ Physiol. 2017 Aug 1;313(2):H354-H367. doi: 10.1152/ajpheart.00070.2017. Epub 2017 May 5. Am J Physiol Heart Circ Physiol. 2017. PMID: 28476920 Free PMC article.
-
Chemical stimulation of vagal afferent neurons and sympathetic vasomotor tone.Brain Res Brain Res Rev. 2003 Mar;41(2-3):288-305. doi: 10.1016/s0165-0173(02)00269-2. Brain Res Brain Res Rev. 2003. PMID: 12663084 Review.
Cited by
-
A vagal reflex evoked by airway closure.Nature. 2024 Mar 6. doi: 10.1038/s41586-024-07144-2. Online ahead of print. Nature. 2024. PMID: 38448588
-
Complex carbohydrate utilization by gut bacteria modulates host food preference.bioRxiv [Preprint]. 2024 Feb 14:2024.02.13.580152. doi: 10.1101/2024.02.13.580152. bioRxiv. 2024. PMID: 38405943 Free PMC article. Preprint.
-
Nav1.8-expressing neurons control daily oscillations of food intake, body weight and gut microbiota in mice.Commun Biol. 2024 Feb 22;7(1):219. doi: 10.1038/s42003-024-05905-3. Commun Biol. 2024. PMID: 38388698 Free PMC article.
-
Microfluidic compartmentalization of rat vagal afferent neurons to model gut-brain axis.Bioelectron Med. 2024 Feb 21;10(1):3. doi: 10.1186/s42234-023-00140-3. Bioelectron Med. 2024. PMID: 38378575 Free PMC article.
-
The Afferent Function of Adipose Innervation.Diabetes. 2024 Mar 1;73(3):348-354. doi: 10.2337/dbi23-0002. Diabetes. 2024. PMID: 38377447 Review.
References
-
- Berthoud H, and Neuhuber WL (2000). Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. Basic Clin. 85, 1–17. - PubMed
-
- Berthoud HR, and Patterson LM (1996). Anatomical relationship between vagal afferent fibers and CCK-immunoreactive entero-endocrine cells in the rat small intestinal mucosa. Acta Anat. (Basel). 156, 123–131. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
