3D shape measurement based on structured light field imaging

Math Biosci Eng. 2019 Oct 22;17(1):654-668. doi: 10.3934/mbe.2020034.

Abstract

In this paper, a three-dimensional (3D) shape measurement method based on structured light field imaging is proposed, which contributes to the biomedical imaging. Generally, light field imaging is challenging to accomplish the 3D shape measurement accurately, as the slope estimation method based on radiance consistency is inaccurate. Taking into consideration the special modulation of structured light field, we utilize the phase information to substitute the phase consistency for the radiance consistency in epi-polar image (EPI) at first. Therefore, the 3D coordinates are derived after light field calibration, but the results are coarse due to slope estimation error and need to be corrected. Furthermore, the 3D coordinates refinement is performed based on relationship between the structured light field image and DMD image of the projector, which allows to improve the performance of the 3D shape measurement. The necessary light field camera calibration is described to generalize its application. Subsequently, the effectiveness of the proposed method is demonstrated with a sculpture and compared to the results of a conventional PMP system.

Keywords: biomedical imaging; epipolar image; phase consistency; depth refinement; structured light field.

Publication types

  • Research Support, Non-U.S. Gov't