Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec;5(12):1250-1259.
doi: 10.1038/s41477-019-0548-z. Epub 2019 Nov 18.

The prevalence, evolution and chromatin signatures of plant regulatory elements

Affiliations

The prevalence, evolution and chromatin signatures of plant regulatory elements

Zefu Lu et al. Nat Plants. 2019 Dec.

Abstract

Chromatin accessibility and modification is a hallmark of regulatory DNA, the study of which led to the discovery of cis-regulatory elements (CREs). Here, we characterize chromatin accessibility, histone modifications and sequence conservation in 13 plant species. We identified thousands of putative CREs and revealed that distal CREs are prevalent in plants, especially in species with large and complex genomes. The majority of distal CREs have been moved away from their target genes by transposable-element (TE) proliferation, but a substantial number of distal CREs also seem to be created by TEs. Finally, plant distal CREs are associated with three major types of chromatin signatures that are distinct from metazoans. Taken together, these results suggest that CREs are prevalent in plants, highly dynamic during evolution and function through distinct chromatin pathways to regulate gene expression.

PubMed Disclaimer

Comment in

Similar articles

Cited by

References

    1. Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).
    1. Priest, H. D., Filichkin, S. A. & Mockler, T. C. cis-Regulatory elements in plant cell signaling. Curr. Opin. Plant Biol. 12, 643–649 (2009).
    1. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019). - PubMed - PMC
    1. Sakabe, N. J., Savic, D. & Nobrega, M. A. Transcriptional enhancers in development and disease. Genome Biol. 13, 238 (2012). - PubMed - PMC
    1. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012). - PubMed - PMC

Publication types