Near-infrared diffuse correlation spectroscopy tracks changes in oxygen delivery and utilization during exercise with and without isolated arterial compression

Am J Physiol Regul Integr Comp Physiol. 2020 Jan 1;318(1):R81-R88. doi: 10.1152/ajpregu.00212.2019. Epub 2019 Nov 20.


Near-infrared diffuse correlation spectroscopy (NIR-DCS) is an emerging technology for simultaneous measurement of skeletal muscle microvascular oxygen delivery and utilization during exercise. The extent to which NIR-DCS can track acute changes in oxygen delivery and utilization has not yet been fully established. To address this knowledge gap, 14 healthy men performed rhythmic handgrip exercise at 30% maximal voluntary contraction, with and without isolated brachial artery compression, designed to acutely reduce convective oxygen delivery to the exercising muscle. Radial artery blood flow (Duplex Ultrasound) and NIR-DCS derived variables [blood flow index (BFI), tissue oxygen saturation (StO2), and metabolic rate of oxygen (MRO2)] were simultaneously measured. During exercise, both radial artery blood flow (+51.6 ± 20.3 mL/min) and DCS-derived BFI (+155.0 ± 82.2%) increased significantly (P < 0.001), whereas StO2 decreased -7.9 ± 6.2% (P = 0.002) from rest. Brachial artery compression during exercise caused a significant reduction in both radial artery blood flow (-32.0 ± 19.5 mL/min, P = 0.001) and DCS-derived BFI (-57.3 ± 51.1%, P = 0.01) and a further reduction of StO2 (-5.6 ± 3.8%, P = 0.001) compared with exercise without compression. MRO2 was not significantly reduced during arterial compression (P = 0.83) due to compensatory reductions in StO2, driven by increases in deoxyhemoglobin/myoglobin (+7.1 ± 6.1 μM, P = 0.01; an index of oxygen extraction). Together, these proof-of-concept data help to further validate NIR-DCS as an effective tool to assess the determinants of skeletal muscle oxygen consumption at the level of the microvasculature during exercise.

Keywords: NIRS; deoxyhemoglobin; oxyhemoglobin; skeletal muscle oxygen consumption.

Publication types

  • Clinical Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Arteries / physiology*
  • Brachial Artery
  • Exercise / physiology*
  • Humans
  • Male
  • Oxygen / blood*
  • Oxygen / metabolism*
  • Regional Blood Flow*
  • Spectroscopy, Near-Infrared / methods*
  • Young Adult


  • Oxygen