Infectious vaginitis due to bacterial vaginosis (BV), vulvovaginal candidiasis (VVC), and Trichomonas vaginalis accounts for a significant proportion of all gynecologic visits in the United States. A prospective multicenter clinical study was conducted to validate the performance of two new in vitro diagnostic transcription-mediated amplification nucleic acid amplification tests (NAATs) for diagnosis of BV, VVC, and trichomoniasis. Patient- and clinician-collected vaginal-swab samples obtained from women with symptoms of vaginitis were tested with the Aptima BV and Aptima Candida/Trichomonas vaginitis (CV/TV) assays. The results were compared to Nugent (plus Amsel for intermediate Nugent) scores for BV, Candida cultures and DNA sequencing for VVC, and a composite of NAAT and culture for T. vaginalis The prevalences of infection were similar for clinician- and patient-collected samples: 49% for BV, 29% for VVC due to the Candida species group, 4% for VVC due to Candida glabrata, and 10% for T. vaginalis Sensitivity and specificity estimates for the investigational tests in clinician-collected samples were 95.0% and 89.6%, respectively, for BV; 91.7% and 94.9% for the Candida species group; 84.7% and 99.1% for C. glabrata; and 96.5% and 95.1% for T. vaginalis Sensitivities and specificities were similar in patient-collected samples. In a secondary analysis, clinicians' diagnoses, in-clinic assessments, and investigational-assay results were compared to gold standard reference methods. Overall, the investigational assays had higher sensitivity and specificity than clinicians' diagnoses and in-clinic assessments, indicating that the investigational assays were more predictive of infection than traditional diagnostic methods. These results provide clinical-efficacy evidence for two in vitro diagnostic NAATs that can detect the main causes of vaginitis.
Keywords: Amsel criteria; Aptima; Nugent score; bacterial vaginosis; candidiasis; clinician’s diagnosis; diagnostic accuracy; molecular test; sensitivity; specificity; trichomoniasis.
Copyright © 2020 Schwebke et al.