Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 18;11(50):46585-46590.
doi: 10.1021/acsami.9b17749. Epub 2019 Dec 9.

Cell-Selective Messenger RNA Delivery and CRISPR/Cas9 Genome Editing by Modulating the Interface of Phenylboronic Acid-Derived Lipid Nanoparticles and Cellular Surface Sialic Acid

Affiliations

Cell-Selective Messenger RNA Delivery and CRISPR/Cas9 Genome Editing by Modulating the Interface of Phenylboronic Acid-Derived Lipid Nanoparticles and Cellular Surface Sialic Acid

Qiao Tang et al. ACS Appl Mater Interfaces. .

Abstract

Messenger RNA (mRNA) represents an emerging class of nucleic acid therapeutics for genome editing and genetic disease treatment. Delivering exogenous mRNA selectively to cells, however, remains a main challenge to broaden the biomedical application of mRNA and develop targeted gene therapy. Herein, we report cell-selective mRNA delivery and CRISPR/Cas9 genome editing by modulating the interface of phenylboronic acid (PBA) derived lipid nanoparticles (NPs) and cellular surface sialic acid (SA). We design a cationic lipid featuring a PBA group, PBA-BADP, to self-assemble with mRNA into nanoparticles via electrostatic interactions. Importantly, these nanoparticles present free PBA groups on their surface, showing an enhanced cellular uptake by SA-overexpressing cancer cells via the interfacial PBA/SA interaction. It is shown that PBA-BADP/mRNA NPs transfection results in 300 times higher luciferase reporter gene expression in cancer cells than that in noncancer cells. Moreover, we demonstrate that the delivery of tumor suppressor p53 mRNA using PBA-BADP selectively prohibits cancer cell growth, while PBA-BADP/Cas9 mRNA NPs delivery knocks out gene expression of HeLa cancer cells in a much higher efficiency than noncancer cells. We believe these findings could further extend the modulation of PBA and cellular SA interface to advance mRNA delivery and genome editing for new gene therapy.

Keywords: CRISPR/Cas9 genome editing; cell-selective delivery; lipid nanoparticles; mRNA delivery; sialic acid.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources