Regional Differences following Partial Salivary Gland Resection

J Dent Res. 2020 Jan;99(1):79-88. doi: 10.1177/0022034519889026. Epub 2019 Nov 25.


Regenerative medicine aims to repair, replace, or restore function to tissues damaged by aging, disease, or injury. Partial organ resection is not only a common clinical approach in cancer therapy but also an experimental injury model used to examine mechanisms of regeneration and repair in organs. We performed a partial resection, or partial sialoadenectomy, in the female murine submandibular salivary gland (SMG) to establish a model for investigation of repair mechanisms in salivary glands (SGs). After partial sialoadenectomy, we performed whole-gland measurements over a period of 56 d and found that the gland increased slightly in size. We used microarray analysis and immunohistochemistry (IHC) to examine messenger RNA and protein changes in glands over time. Microarray analysis identified dynamic changes in the transcriptome 3 d after injury that were largely resolved by day 14. At the 3-d time point, we detected gene signatures for cell cycle regulation, inflammatory/repair response, and extracellular matrix (ECM) remodeling in the partially resected glands. Using quantitative IHC, we identified a transient proliferative response throughout the gland. Both secretory epithelial and stromal cells expressed Ki67 that was detectable at day 3 and largely resolved by day 14. IHC also revealed that while most of the gland underwent a wound-healing response that resolved by day 14, a small region of the gland showed an aberrant sustained fibrotic response characterized by increased levels of ECM deposition, sustained Ki67 levels in stromal cells, and a persistent M2 macrophage response through day 56. The partial submandibular salivary gland resection model provides an opportunity to examine a normal healing response and an aberrant fibrotic response within the same gland to uncover mechanisms that prevent wound healing and regeneration in mammals. Understanding regional differences in the wound-healing responses may ultimately affect regenerative therapies for patients.

Keywords: extracellular matrix; fibrosis; macrophages; regeneration; submandibular gland; wound repair.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Extracellular Matrix
  • Female
  • Humans
  • Macrophages
  • Mice
  • Regenerative Medicine
  • Salivary Glands* / surgery
  • Submandibular Gland* / surgery
  • Transcriptome