In Vitro Antibacterial Activity and Mechanism of Vanillic Acid against Carbapenem-Resistant Enterobacter cloacae

Antibiotics (Basel). 2019 Nov 13;8(4):220. doi: 10.3390/antibiotics8040220.


Vanillic acid (VA) is a flavoring agent found in edible plants and fruits. Few recent studies exhibited robust antibacterial activity of VA against several pathogen microorganisms. However, little was reported about the effect of VA on carbapenem-resistant Enterobacter cloacae (CREC). The purpose of the current study was to assess in vitro antimicrobial and antibiofilm activities of VA against CREC. Here, minimum inhibitory concentrations (MIC) of VA against CREC was determined via gradient diffusion method. Furthermore, the antibacterial mode of VA against CREC was elucidated by measuring changes in intracellular adenosine triphosphate (ATP) concentration, intracellular pH (pHin), cell membrane potential and membrane integrity. In addition, antibiofilm formation of VA was measured by crystal violet assay and visualized with field emission scanning electron microscopy (FESEM) and confocal laser scanning microscopy (CLSM). The results showed that MIC of VA against E. cloacae was 600 μg/mL. VA was capable of inhibiting the growth of CREC and destroying the cell membrane integrity of CREC, as confirmed by the decrease of intracellular ATP concentration, pHin and membrane potential as well as distinctive variation in cellular morphology. Moreover, crystal violet staining, FESEM and CLSM results indicated that VA displayed robust inhibitory effects on biofilm formation of CREC and inactivated biofilm-related CREC cells. These findings revealed that VA exhibits potent antibacterial activity against CREC, and thus has potential to be exploited as a natural preservative to control the CREC associated infections.

Keywords: biofilm; biofilm-associated cells; carbapenem-resistant Enterobacter cloacae; cell membrane damage; vanillic acid.

Publication types

  • Retracted Publication