Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct;100(4-1):043303.
doi: 10.1103/PhysRevE.100.043303.

Modeling Cell Migration Regulated by Cell Extracellular-Matrix Micromechanical Coupling

Affiliations

Modeling Cell Migration Regulated by Cell Extracellular-Matrix Micromechanical Coupling

Yu Zheng et al. Phys Rev E. .

Abstract

Cell migration in fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response, and cancer progression. During migration, individual cells can generate active pulling forces via actomyosin contraction, which are transmitted to the ECM fibers through focal adhesion complexes, remodel the ECM, and eventually propagate to and can be sensed by other cells in the system. The microstructure and physical properties of the ECM can also significantly influence cell migration, e.g., via durotaxis and contact guidance. Here, we develop a computational model for two-dimensional cell migration regulated by cell-ECM micromechanical coupling. Our model explicitly takes into account a variety of cellular-level processes, including focal adhesion formation and disassembly, active traction force generation and cell locomotion due to actin filament contraction, transmission and propagation of tensile forces in the ECM, as well as the resulting ECM remodeling. We validate our model by accurately reproducing single-cell dynamics of MCF-10A breast cancer cells migrating on collagen gels and show that the durotaxis and contact guidance effects naturally arise as a consequence of the cell-ECM micromechanical interactions considered in the model. Moreover, our model predicts strongly correlated multicellular migration dynamics, which are resulted from the ECM-mediated mechanical coupling among the migrating cell and are subsequently verified in in vitro experiments using MCF-10A cells. Our computational model provides a robust tool to investigate emergent collective dynamics of multicellular systems in complex in vivo microenvironment and can be utilized to design in vitro microenvironments to guide collective behaviors and self-organization of cells.

Similar articles

See all similar articles

Cited by 1 article

Feedback