Identification of hub genes and key pathways associated with the progression of gynecological cancer

Oncol Lett. 2019 Dec;18(6):6516-6524. doi: 10.3892/ol.2019.11004. Epub 2019 Oct 18.

Abstract

Gynecological cancer is the leading cause of cancer mortality in women. However, the mechanisms underlying gynecological cancer progression have remained largely unclear. In the present study, 799 dysregulated genes were identified in ovarian serous cystadenocarcinoma (OV), 488 dysregulated genes in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and 621 dysregulated genes in uterine corpus endometrial carcinoma (UCEC). Bioinformatics analysis revealed that mRNA splicing and cell proliferation-associated biological processes served important roles in OV progression. Metabolism-associated biological processes played important roles in CESC progression, and protein phosphorylation and small GTPase-mediated signal transduction served important roles in UCEC progression. The present study also constructed OV, CESC and UCEC progression-associated protein-protein interaction networks to reveal the associations among these genes. Furthermore, Kaplan-Meier curve analysis showed that progression-related genes were associated with the duration of overall survival. Finally, NARS2 and TPT1 in OV, SMYD2, EGLN1, TNFRSF10D, FUT11, SYTL3, MMP8 and EREG in CESC, and SLC5A1, TXN, KDM4B, TXNDC11, HSDL2, COX16, MGAT4A, DAGLA, ELOVL7, THRB and PCOLCE2 in UCEC were identified as hub genes in cancer progression. Therefore, this study may assist in the identification of novel mechanisms underlying cancer progression and new biomarkers for gynecological cancer prognosis and therapy.

Keywords: biomarker; cervical squamous cell carcinoma and endocervical adenocarcinoma; ovarian serous cystadenocarcinoma; protein-protein interaction analysis; uterine corpus endometrial carcinoma.