Transcriptional control by enhancers and enhancer RNAs

Transcription. 2019 Aug-Oct;10(4-5):171-186. doi: 10.1080/21541264.2019.1695492. Epub 2019 Dec 2.

Abstract

The regulation of gene expression is a fundamental cellular process and its misregulation is a key component of disease. Enhancers are one of the most salient regulatory elements in the genome and help orchestrate proper spatiotemporal gene expression during development, in homeostasis, and in response to signaling. Notably, molecular aberrations at enhancers, such as translocations and single nucleotide polymorphisms, are emerging as an important source of human variation and susceptibility to disease. Herein we discuss emerging paradigms addressing how genes are regulated by enhancers, common features of active enhancers, and how non-coding enhancer RNAs (eRNAs) can direct gene expression programs that underlie cellular phenotypes. We survey the current evidence, which suggests that eRNAs can bind to transcription factors, mediate enhancer-promoter interactions, influence RNA Pol II elongation, and act as decoys for repressive cofactors. Furthermore, we discuss current methodologies for the identification of eRNAs and novel approaches to elucidate their functions.

Keywords: Enhancer; Enhancer RNA; Gene Regulation; Super Enhancer; eRNA.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Enhancer Elements, Genetic*
  • Gene Expression Regulation
  • Humans
  • Promoter Regions, Genetic
  • RNA, Untranslated / genetics*
  • Transcription Factors / genetics
  • Transcription, Genetic*

Substances

  • RNA, Untranslated
  • Transcription Factors